Free algebras in varieties of BL-algebras with a Boolean retract

The aim of this paper is to give a description of the free algebras in varieties of BL-algebras having the Boolean retraction property. This description is given in terms of weak Boolean products over Cantor spaces. The stalks are obtained in a constructive way from free radical algebras. Radical al...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cignoli, R.
Otros Autores: Torrens, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2002
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06892caa a22007457a 4500
001 PAPER-5095
003 AR-BaUEN
005 20230518203443.0
008 190411s2002 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0036435271 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cignoli, R. 
245 1 0 |a Free algebras in varieties of BL-algebras with a Boolean retract 
260 |c 2002 
270 1 0 |m Cignoli, R.; Departamento de Matemática, Ciudad Universitaria, Univ. de Buenos Aires, 1428 Buenos Aires, Argentina; email: cignoli@mate.dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aglianò, P., Ferreirim, I.M.A., Montagna, F., (1999) Basic hoops: An algebraic study of continuous t-norms, , manuscript 
504 |a Balbes, R., Dwinger, P.H., (1974) Distributive lattices, , University of Missoury Press, Columbia 
504 |a Berman, J., Blok, W.J., The Fraser-Horn and Apple properties (1987) Trans. Amer. Math. Soc., 302, pp. 427-465 
504 |a Bigelow, D., Burris, S., Boolean algebras of factor congruences (1990) Acta Sci. Math., 54, pp. 11-20 
504 |a Blok, W.J., Ferreirim, I.A.M., On the structure of hoops (2000) Algebra Universalis, 43, pp. 233-257 
504 |a Burris, S., Werner, H., Sheaf constructions and their elementary properties (1979) Trans. Amer. Math. Soc., 248, pp. 269-309 
504 |a Chang, C.C., Algebraic analysis of many-valued logics (1958) Trans. Amer. Math. Soc., 88, pp. 467-490 
504 |a Chang, C.C., A new proof of the completeness of the Lukasiewicz axioms (1959) Trans. Amer. Math. Soc., 93, pp. 74-80 
504 |a Cignoli, R., D'Ottaviano, I.M., Mundici, D., (2000) Algebraic foundations of many-valued reasoning, , Kluwer, Dordrecht-Boston-London 
504 |a Cignoli, R., Esteva, F., Godo, Ll., Torrens, A., Basic Logic is the Logic of continuous t-norms and their residua (2000) Soft Computing, 4, pp. 106-112 
504 |a Cignoli, R., Torrens, A., Boolean products of MV-algebras: Hypernormal MV-algebras (1996) J. Math. Analysis Appl., 99, pp. 637-653 
504 |a Cignoli, R., Torrens, A., An algebraic analysis of product logic (2000) Multiple valued Logic, 5, pp. 45-65 
504 |a Cignoli, R., Torrens, A., Free cancellative hoops (2000) Algebra Universalis, 43, pp. 213-216 
504 |a Di Nola, A., Lettieri, A., Perfect MV-algebras are Categorically equivalent to Abelian l-groups (1994) Studia Logica, 53, pp. 417-432 
504 |a Dobbertin, H., Hansoul, G., Varlet, J.C., Two problems about perfect distributive lattices (1987) Arch. Math. (Basel), 49, pp. 83-90 
504 |a Dummett, M., A propositional calculus with denumerable matrix (1959) J. Symb. Logic, 24, pp. 97-106 
504 |a Gödel, K., Zum intuitionistischen Aussagenkalkül (1932) Math.-naturwissensch. Klasse, 69, pp. 65-66. , Anzeiger Akademie der Wissenschaften Wien 
504 |a Hájek, P., Basic fuzzy logic and BL-algebras (1998) Soft Computing, 2, pp. 124-128 
504 |a Hájek, P., (1998) Methamathematics of Fuzzy Logic, , Kluwer, Dordrecht-Boston-London 
504 |a Hájek, P., Godo, L., Esteva, F., A complete many-valued logic with product conjunction (1996) Arch. Math. Logic, 35, pp. 191-208 
504 |a Höhle, U., Commutative, residuated l-monoids (1995) Non-classical Logics and their applications to Fuzzy subsets, pp. 33-106. , Kluwer Academic Publishes, Dordrecht-Boston-London 
504 |a Horn, A., Logic with truth values in a linearly ordered Heyting algebra (1969) J. Symb. Logic, 34, pp. 395-408 
504 |a Horn, A., Free L-algebras (1969) J. Symb. Logic, 34, pp. 475-480 
504 |a Idziak, P.M., Lattice operations in BCK-algebras (1984) Math. Japonica, 29, pp. 839-846 
504 |a McNaughton, R., A theorem about infinite-valued sentential logic (1951) J. Symb. Logic, 16, pp. 1-13 
504 |a Monteiro, A., Linéarisation de la logique positive de Hilbert Bernays (1962) Revista Unión Mat. Arg., 20, pp. 308-309 
504 |a Monteiro, A., Sur les algèbres de Heyting symètriques (1980) Port. Math., 39, pp. 1-237 
504 |a Turunen, E., (1999) Mathematics behind Fuzzy Logic, , Physica-Verlag, Heidelberg, New York 
520 3 |a The aim of this paper is to give a description of the free algebras in varieties of BL-algebras having the Boolean retraction property. This description is given in terms of weak Boolean products over Cantor spaces. The stalks are obtained in a constructive way from free radical algebras. Radical algebras are obtained endowing the maximal radicals of BL-algebras with a unary operation corresponding to double negation. The radical algebras obtained from a variety of BL-algebras form themselves a variety, that in the cases of PL-algebras and bipartite MV-algebras can be identified with the class of cancellative hoops.  |l eng 
536 |a Detalles de la financiación: Generalitat de Catalunya, PB 97-0888 
536 |a Detalles de la financiación: Presented by W. Blok. Received February 11, 2001; accepted in final form January 14, 2002. 2000 Mathematics Subject Classification: 06D72, 06E15, 08B20. Key words and phrases: BL-algebras, radical algebras, radical variety, Boolean representation, Peirce representation, Boolean retraction property, free BL-algebras. This paper was prepared while the first author was visiting the Universidad de Barcelona supported by INTERCAMPUS Program. The second author was partially supported by Grants SGR98/00018 of D.G.R. of Generalitat de Catalunya and PB 97-0888 of D.D.G.I.C.Y.T. of Spain. 
593 |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - CONICET, 1428 Buenos Aires, Argentina 
593 |a Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain 
690 1 0 |a BL-ALGEBRAS 
690 1 0 |a BOOLEAN REPRESENTATION 
690 1 0 |a BOOLEAN RETRACTION PROPERTY 
690 1 0 |a FREE BL-ALGEBRAS 
690 1 0 |a PEIRCE REPRESENTATION 
690 1 0 |a RADICAL ALGEBRAS 
690 1 0 |a RADICAL VARIETY 
700 1 |a Torrens, A. 
773 0 |d 2002  |g v. 48  |h pp. 55-79  |k n. 1  |p Algebra Univers.  |x 00025240  |w (AR-BaUEN)CENRE-267  |t Algebra Universalis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036435271&doi=10.1007%2fs00012-002-8204-1&partnerID=40&md5=1324baade32f25e7841a7c5e1965c2c0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00012-002-8204-1  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00025240_v48_n1_p55_Cignoli  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00025240_v48_n1_p55_Cignoli  |y Registro en la Biblioteca Digital 
961 |a paper_00025240_v48_n1_p55_Cignoli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 66048