Modulation of ACh release by presynaptic muscarinic autoreceptors in the neuromuscular junction of the newborn and adult rat

We studied the presynaptic muscarinic autoreceptor subtypes controlling ACh release and their relationship with voltage-dependent calcium channels in the neuromuscular synapses of the Levator auris longus muscle from adult (30-40 days) and newborn (3-6 and 15 days postnatal) rats. Using intracellula...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Santafé, M.M
Otros Autores: Salon, I., Garcia, N., Lanuza, M.A, Uchitel, O.D, Tomàs, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2003
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16344caa a22018017a 4500
001 PAPER-5073
003 AR-BaUEN
005 20230518203441.0
008 190411s2003 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0037234739 
024 7 |2 cas  |a acetylcholine, 51-84-3, 60-31-1, 66-23-9; methoctramine, 104807-46-7; nitrendipine, 39562-70-4; omega conotoxin GVIA, 107407-86-3; pirenzepine, 28797-61-7, 29868-97-1; tropicamide, 1508-75-4; Acetylcholine, 51-84-3; Autoreceptors; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Calcium Channels, N-Type; Calcium Channels, P-Type; Calcium Channels, Q-Type; Diamines; methoctramine, 104807-46-7; Muscarinic Antagonists; Nitrendipine, 39562-70-4; omega-Agatoxin IVA; omega-Conotoxin GVIA, 92078-76-7; Pirenzepine, 28797-61-7; Receptor, Muscarinic M1; Receptor, Muscarinic M2; Receptor, Muscarinic M3; Receptor, Muscarinic M4; Receptors, Muscarinic 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EJONE 
100 1 |a Santafé, M.M. 
245 1 0 |a Modulation of ACh release by presynaptic muscarinic autoreceptors in the neuromuscular junction of the newborn and adult rat 
260 |c 2003 
270 1 0 |m Santafé, M.M.; Unitat d'Histologia i Neurobiologia, Facultat de Med. i C. de la S., Universitat Rovira i Virgili, carrer St Llorenç num 21, 43201-Reus, Spain; email: msm@fmcs.urv.es 
506 |2 openaire  |e Política editorial 
504 |a Abbs, E.T., Joseph, D.N., The effects of atropine and oxotremorine on acetylcholine release in rat phrenic nerve-diaphragm preparations (1981) Br. J. Pharmacol., 73, pp. 481-483 
504 |a Allen, T.G.J., The role of N-, Q- and R-type Ca2+ channels in feedback inhibition of ACh release from rat basal forebrain neurones (1999) J. Physiol. (Lond.), 515, pp. 93-107 
504 |a Allen, T.G.J., Brown, D.A., M2 muscarinic receptor mediated inhibition of the Ca2+ current in rat magnocellular cholinergic basal forebrain neurones (1993) J. Physiol. (Lond.), 466, pp. 173-189 
504 |a Allen, T.G.J., Sim, J.A., Brown, D.A., The whole-cell calcium current in acutely dissociated magnocellular cholinergic basal forebrain neurones of the rat (1993) J. Physiol. (Lond.), 460, pp. 91-116 
504 |a Arellano, R.O., Garay, E., Miledi, R., Muscarinic receptor heterogeneity in follicle-enclosed Xenopus oocytes (1999) J. Physiol. (Lond.), 521, pp. 409-419 
504 |a Arenson, M.S., Muscarinic inhibition of quantal transmitter release from the magnesium-paralysed frog sartorius muscle (1989) Neuroscience, 30, pp. 827-836 
504 |a Atchison, W.D., Dihydropyridine-sensitive and -insensitive components of acetylcholine release from rat motor nerve terminals (1989) J. Pharmacol. Exp. Ther., 251, pp. 672-678 
504 |a Benoit, P., Changeux, J.P., Consequences of tenotomy on the evolution of multiinnervation in developing rat soleus muscle (1975) Brain Res., 99, pp. 354-358 
504 |a Bowersox, S.S., Miljanich, G.P., Sugiura, Y., Li, C., Nadasdi, L., Hoffman, B.B., Ramachandran, J., Ko, C.-P., Differential blockade of voltage-sensitive calcium channels at the mouse neuromuscular junction by novel ω-conopeptides and ω-agatoxin-IVA (1995) J. Pharmacol. Exp. Ther., 273, pp. 248-256 
504 |a Caulfield, M.P., Muscarinic receptors - Characterization, coupling and function (1993) Pharmacol. Therap., 58, pp. 319-379 
504 |a Caulfield, M.P., Birdsall, N.M.J., Classification of muscarine acetylcholine receptors (1998) Pharmacol. Rev., 50, pp. 279-290 
504 |a Day, N.C., Wood, S.J., Ince, P.G., Volsen, S.G., Smith, W., Slater, C.R., Shaw, P.J., Differential localization of voltage-dependent calcium channel α1 subunits at the human and rat neuromuscular junction (1997) J. Neurosci., 17, pp. 6226-6235 
504 |a Dennis, M.J., Ziskind-Conhaim, L., Harris, A.J., Development of neuromuscular junctions in rat embryos (1981) Dev. Biol., 81, pp. 266-279 
504 |a Dolezal, V., Túcek, S., Presynaptic muscarinic receptors and the release of acetylcholine from cortical prisms: Roles of Ca2+ and K+ concentration (1993) Naunyn-Schmiedeberg's Arch. Pharmacol., 348, pp. 228-233 
504 |a Felder, C.C., Muscarinic acetylcholine receptors: Signal transduction through multiple effects (1995) FASEB J., 9, pp. 619-625 
504 |a Ganguly, D.K., Das, M., Effects of oxotremorine demonstrate pre-synaptic muscarinic and dopaminergic receptors on motor nerve terminals (1979) Nature, 278, pp. 645-646 
504 |a Hamilton, B.R., Smith, D.O., Autoreceptor-modulated purinergic and cholinergic inhibition of motor nerve terminal calcium currents in the rat (1991) J. Physiol. (Lond.), 432, pp. 327-341 
504 |a Hong, S.J., Chang, C.C., Inhibition of acetylcholine release from mouse motor nerve by a P-type calcium channel blocker, ω-Agatoxin IVA (1995) J. Physiol. (Lond.), 482, pp. 283-290 
504 |a Hsu, K.S., Huang, C.C., Gean, P.W., Muscarinic depression of excitatory synaptic transmission mediated by the presynaptic M3 receptors in the rat neostriatum (1995) Neurosci. Lett., 197, pp. 141-144 
504 |a Hubbard, J.J., Wilson, D.F., Neuromuscular transmission in a mammalian preparation in absence of the blocking drugs and the effect of D-tubocurarine (1973) J. Physiol. (Lond.), 228, pp. 307-327 
504 |a Iwasaki, S., Momiyama, A., Uchitel, O.D., Takahashi, T., Developmental changes in calcium channel types mediating central synaptic transmission (2000) J. Neurosci., 20, pp. 59-65 
504 |a Jansen, J.K.S., Fladby, T., The perinatal reorganization of the innervation of skeletal muscle in mammals (1990) Prog. Neurobiol., 34, pp. 39-90 
504 |a Katz, B., Miledi, R., Further study of the role of calcium in synaptic transmission (1970) J. Physiol. (Lond.), 207, pp. 789-801 
504 |a Katz, B., Miledi, R., Transmitter leakage from motor nerve endings (1977) Proc. R. Soc. B, 196, pp. 59-72 
504 |a Kerr, L.M., Yoshikami, D., A venom peptide with a novel presynaptic blocking action (1984) Nature, 308, pp. 282-284 
504 |a Margeta-Mitrovic, M., Grigg, J.J., Koyano, K., Nakajima, Y., Nakajima, S., Neurotensin and substance P inhibit low- and high-voltage-activated Ca2+ channels in cultured newborn rat nucleus basalis neurons (1997) J. Neurophysiol., 78, pp. 1341-1352 
504 |a McLachlan, E.M., Martin, A.R., Non-linear summation of end-plate potentials in the frog and mouse (1981) J. Physiol. (Lond.), 311, pp. 307-324 
504 |a Minic, J., Molgo, J., Karlsson, E., Krejci, E., Regulation of acetylcholine release by muscarinic receptors at the mouse neuromuscular junction depends on the activity of acetylcholinesterase (2002) Eur. J. Neurosci., 15, pp. 439-448 
504 |a Mintz, I.M., Sabatini, B.L., Regehr, W.G., Calcium control of transmitter release at a cerebellar synapse (1995) Neuron, 15, pp. 675-688 
504 |a Muller, D., Loctin, F., Dunant, Y., Inhibition of evoked acetylcholine release: Two different mechanisms in the Torpedo electric organ (1987) Eur. J. Pharmacol., 33, pp. 225-234 
504 |a Nathanson, N.M., A multiplicity of muscarinic mechanisms: Enough signaling pathways to take your breath away (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 6245-6247 
504 |a O'Brien, R.A.D., Ostberg, A.J.C., Vrbovà, G., Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle (1978) J. Physiol. (Lond.), 282, pp. 571-582 
504 |a Penner, R., Dreyer, F., Two different presynaptic calcium currents in mouse motor nerve terminals (1986) Pflügers Arch., 406, pp. 190-197 
504 |a Protti, D.A., Szczupak, L., Scornik, F.S., Uchitel, O.D., Effect of ω-conotoxin GVIA on neurotransmitter releases at the mouse neuromuscular junction (1991) Brain Res., 557, pp. 336-339 
504 |a Protti, D., Uchitel, O.D., P/Q-type calcium channels activate neighboring calcium-dependent potassium channels in mouse motor nerve terminals (1993) Pflügers Arch., 434, pp. 496-412 
504 |a Ren, J., Harty, R.F., Presynaptic muscarinic receptors modulate acetylcholine release from rat antral mucosal/submucosal nerves (1994) Digest. Dis. Sci., 39, pp. 1099-1106 
504 |a Robitaille, R., Jahromi, B.S., Charlton, M.P., Muscarinic Ca2+ responses resistant to muscarinic antagonists at presynaptic Schwann cells of the frog neuromuscular junctions (1997) J. Physiol. (Lond.), 504, pp. 337-347 
504 |a Rosato-Siri, M.D., Uchitel, O.D., Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions (1999) J. Physiol. (Lond.), 514, pp. 533-540 
504 |a Rouse, S.T., Levey, A.I., Muscarinic acetylcholine receptor immunoreactivity after hippocampal commissural/associational pathway lesions: Evidence for multiple presynaptic receptor subtypes (1997) J. Comp. Neurol., 380, pp. 382-394 
504 |a Santafé, M.M., Garcia, N., Lanuza, M.A., Uchitel, O.D., Tomàs, J., Calcium channels coupled to neurotransmitter release at dually innervated neuromuscular junctions in the newborn rat (2001) Neuroscience, 102, pp. 697-708 
504 |a Slutsky, I., Parnas, H., Parnas, I., Presynaptic effects of muscarine on ACh release at the frog neuromuscular junction (1999) J. Physiol. (Lond.), 514, pp. 769-782 
504 |a Starke, K., Göthert, M., Kilbinger, H., Modulation of neurotransmitter release by presynaptic autoreceptors (1989) Physiol. Rev., 69, pp. 864-989 
504 |a Uchitel, O.D., Protti, D.A., Sánchez, V., Cherksey, B.D., Sugimori, M., Llinás, R., P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 3330-3333 
504 |a Vannucchi, M.G., Pepeu, G., Muscarinic receptor modulation of acetylcholine release from rat cerebral cortex and hippocampus (1995) Neurosci. Lett., 190, pp. 53-56 
504 |a Wanke, E., Ferroni, A., Malgaroli, A., Ambrosini, A., Pozann, T., Meldolesi, J., Activation of muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons (1987) Proc. Natl. Acad. Sci. USA, 84, pp. 4313-4317 
504 |a Wessler, I., Karl, M., Mai, M., Diener, A., Muscarine receptors on the rat phrenic nerve, evidence for positive and negative muscarinic feedback mechanisms (1987) Naunyn-Schmiedeberg's Arch. Pharmacol., 335, pp. 605-612 
504 |a Westenbroek, R.E., Hoskins, L., Catterall, W.A., Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals (1998) J. Neurosci., 18, pp. 6319-6330 
504 |a Williams, S., Serafin, M., Muhlethaler, M., Bernheim, L., Distinct contributions of high- and low-voltage-activated calcium currents to after-hyperpolarizations in cholinergic nucleus basalis neurons of the guinea pig (1997) J. Neurosci., 17, pp. 7307-7315 
520 3 |a We studied the presynaptic muscarinic autoreceptor subtypes controlling ACh release and their relationship with voltage-dependent calcium channels in the neuromuscular synapses of the Levator auris longus muscle from adult (30-40 days) and newborn (3-6 and 15 days postnatal) rats. Using intracellular recording, we studied how several muscarinic antagonists affected the evoked endplate potentials. In some experiments we previously incubated the muscle with calcium channel blockers (nitrendipine, ω-conotoxin-GVIA and ω-Agatoxin-IVA) before determining the muscarinic response. In the adult, the M1 receptor-selective antagonist pirenzepine (10 μM) reduced evoked neurotransmission (≈47%). The M2 receptor-selective antagonist methoctramine (1 μM) increased the evoked release (≈67%). Both M1- and M2-mediated mechanisms depend on calcium influx via P/Q-type synaptic channels. We found nothing to indicate the presence of M3 (4-DAMP-sensitive) or M4 (tropicamide-sensitive) receptors in the muscles of adult or newborn rats. In the 3-6-day newborn rats, pirenzepine reduced the evoked release (≈30%) by a mechanism independent of L-, N- and P/Q-type calcium channels, and the M2 antagonist methoctramine (1 μM) unexpectedly decreased the evoked release (≈40%). This methoctramine effect was a P/Q-type calcium-channel-dependent mechanism. However, upon maturation in the first two postnatal weeks, the M2 pathway shifted to perform the calcium-dependent release-inhibitory activity found in the adult. We show that the way in which M1 and M2 muscarinic receptors modulate neurotransmission can differ between the developing and adult rat neuromuscular synapse.  |l eng 
593 |a Unitat d'Histologia i Neurobiologia, Facultat de Med. i C. de la S., Universitat Rovira i Virgili, carrer St Llorenç num 21, 43201-Reus, Spain 
593 |a Lab. de Fisiol./Biol. Molec./Celular, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428-Buenos Aires, Argentina 
690 1 0 |a CALCIUM CHANNELS 
690 1 0 |a CHOLINERGIC SYNAPSES 
690 1 0 |a MOTOR END-PLATE 
690 1 0 |a MOTOR NERVE TERMINAL 
690 1 0 |a 1,1 DIMETHYL 4 DIPHENYLACETOXYPIPERIDINIUM IODIDE 
690 1 0 |a ACETYLCHOLINE 
690 1 0 |a AUTORECEPTOR 
690 1 0 |a CALCIUM CHANNEL L TYPE 
690 1 0 |a CALCIUM CHANNEL N TYPE 
690 1 0 |a CALCIUM CHANNEL P TYPE 
690 1 0 |a CALCIUM CHANNEL Q TYPE 
690 1 0 |a METHOCTRAMINE 
690 1 0 |a MUSCARINIC M1 RECEPTOR 
690 1 0 |a MUSCARINIC M2 RECEPTOR 
690 1 0 |a MUSCARINIC M3 RECEPTOR 
690 1 0 |a MUSCARINIC M4 RECEPTOR 
690 1 0 |a NITRENDIPINE 
690 1 0 |a OMEGA AGATOXIN VIA 
690 1 0 |a OMEGA CONOTOXIN GVIA 
690 1 0 |a PIPERIDINE DERIVATIVE 
690 1 0 |a PIRENZEPINE 
690 1 0 |a TROPICAMIDE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ACETYLCHOLINE RELEASE 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a CALCIUM TRANSPORT 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DOSE RESPONSE 
690 1 0 |a DRUG EFFECT 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a MINIATURE ENDPLATE POTENTIAL 
690 1 0 |a MUSCLE CONTRACTION 
690 1 0 |a NEUROMUSCULAR SYNAPSE 
690 1 0 |a NEUROTRANSMISSION 
690 1 0 |a NEWBORN 
690 1 0 |a NONHUMAN 
690 1 0 |a PERINATAL PERIOD 
690 1 0 |a PRESYNAPTIC NERVE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a RAT 
690 1 0 |a ACETYLCHOLINE 
690 1 0 |a AGING 
690 1 0 |a ANIMALS 
690 1 0 |a ANIMALS, NEWBORN 
690 1 0 |a AUTORECEPTORS 
690 1 0 |a CALCIUM CHANNEL BLOCKERS 
690 1 0 |a CALCIUM CHANNELS 
690 1 0 |a CALCIUM CHANNELS, L-TYPE 
690 1 0 |a CALCIUM CHANNELS, N-TYPE 
690 1 0 |a CALCIUM CHANNELS, P-TYPE 
690 1 0 |a CALCIUM CHANNELS, Q-TYPE 
690 1 0 |a DIAMINES 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a MOTOR ENDPLATE 
690 1 0 |a MUSCARINIC ANTAGONISTS 
690 1 0 |a MUSCLE, SKELETAL 
690 1 0 |a NEUROMUSCULAR JUNCTION 
690 1 0 |a NITRENDIPINE 
690 1 0 |a OMEGA-AGATOXIN IVA 
690 1 0 |a OMEGA-CONOTOXIN GVIA 
690 1 0 |a PIRENZEPINE 
690 1 0 |a PRESYNAPTIC TERMINALS 
690 1 0 |a RATS 
690 1 0 |a RATS, SPRAGUE-DAWLEY 
690 1 0 |a RECEPTOR, MUSCARINIC M1 
690 1 0 |a RECEPTOR, MUSCARINIC M2 
690 1 0 |a RECEPTOR, MUSCARINIC M3 
690 1 0 |a RECEPTOR, MUSCARINIC M4 
690 1 0 |a RECEPTORS, MUSCARINIC 
690 1 0 |a SYNAPTIC TRANSMISSION 
700 1 |a Salon, I. 
700 1 |a Garcia, N. 
700 1 |a Lanuza, M.A. 
700 1 |a Uchitel, O.D. 
700 1 |a Tomàs, J. 
773 0 |d 2003  |g v. 17  |h pp. 119-127  |k n. 1  |p Eur. J. Neurosci.  |x 0953816X  |w (AR-BaUEN)CENRE-4671  |t European Journal of Neuroscience 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037234739&doi=10.1046%2fj.1460-9568.2003.02428.x&partnerID=40&md5=27a05b3dfadfd89d695be39dba483c3b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1046/j.1460-9568.2003.02428.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0953816X_v17_n1_p119_Santafe  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0953816X_v17_n1_p119_Santafe  |y Registro en la Biblioteca Digital 
961 |a paper_0953816X_v17_n1_p119_Santafe  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 66026