Flavonoid modulation of ionic currents mediated by GABAA and GABAC receptors

The modulation of ionotropic γ-aminobutyric acid (GABA) receptors (GABA-gated Cl- channels) by a group of natural and synthetic flavonoids was studied in electrophysiological experiments. Quercetin, apigenin, morine, chrysin and flavone inhibited ionic currents mediated by α1β1γ2s GABAA and ρ1 GABAC...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Goutman, J.D
Otros Autores: Waxemberg, M.D, Doñate-Oliver, F., Pomata, P.E, Calvo, D.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2003
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15242caa a22014297a 4500
001 PAPER-5055
003 AR-BaUEN
005 20230518203440.0
008 190411s2003 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0037436059 
024 7 |2 cas  |a acetylcholine, 51-84-3, 60-31-1, 66-23-9; alpha naphthoflavone, 604-59-1; apigenin, 520-36-5; benzodiazepine, 12794-10-4; chrysin, 12624-02-1, 480-40-0; flavone, 525-82-6; flumazenil, 78755-81-4; kainic acid, 487-79-6; morin, 480-16-0; quercetin, 117-39-5; serotonin, 50-67-9 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EJPHA 
100 1 |a Goutman, J.D. 
245 1 0 |a Flavonoid modulation of ionic currents mediated by GABAA and GABAC receptors 
260 |b Elsevier  |c 2003 
270 1 0 |m Calvo, D.J.; Inst. Invest. Ing. Genet. Biol. M., Vuelta de Obligado 2490, Capital Federal (1428), Buenos Aires, Argentina; email: dcalvo@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Avallone, R., Zanoli, P., Puia, G., Kleinschnitz, M., Schreier, P., Baraldi, M., Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla (2000) Biochem. Pharmacol., 59, pp. 1387-1394 
504 |a Barnard, E.A., Skolnick, P., Olsen, R.W., Möhler, H., Sieghart, W., Biggio, G., Braestrup, C., Langer, S.Z., International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: Classification on the basis of subunit structure and receptor function (1998) Pharmacol. Rev., 50, pp. 291-313 
504 |a Blaschke, M., Gremmels, D., Everts, I., Weigand, E., Heinemann, S.F., Hollmann, M., Keller, B.U., Pharmacological differentiation between neuronal and recombinant glutamate receptor channels expressed in Xenopus oocytes (1997) Neuropharmacology, 36, pp. 1489-1501 
504 |a Bohm, B.A., Introduction to flavonoids (1998) Chemistry and Biochemistry of Organic Natural Products, , Amsterdam: Harwood Academic Publishers 
504 |a Buisson, B., Gopalakrishnan, M., Arneric, S.P., Sullivan, J.P., Bertrand, D., Human α4β2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: A patch-clamp study (1996) J. Neurosci., 16, pp. 7880-7891 
504 |a Calvo, D.J., Goutman, J.D., Waxemberg, M.D., Doñate-Oliver, F., Pomata, P.E., Novel pharmacological effects of flavonoids: functional studies on ionotropic neurotransmitter receptors. Synaptic Transmission 100 years after L. Luciani (2000) Symposium in Honour of Ricardo Miledi, p. 25. , Rome, Italy. Org: F. Eusebi, F. Grassi, L. Negri, F. Ruzzier. Università di Roma "La Sapienza". Dipartimento di Fisiologia Umana e Farmacologia "V. Erspamer". Casa Editrice Scientifica Internazionale. Abstract 
504 |a Chakravarthy, B.K., Rao, Y.V., Gambhir, S.S., Gode, K.D., Isolation of amentoflavone from Selaginella rupestris and its pharmacological activity on central nervous system, smooth muscles and isolated frog heart preparations (1981) Planta Med., 43, pp. 64-70 
504 |a Cohen, Z., Bonvento, G., Lacombe, P., Hamel, E., Serotonin in the regulation of brain microcirculation (1996) Prog. Neurobiol., 50, pp. 335-362 
504 |a Dekermendjian, K., Kahnberg, P., Witt, M.R., Sterner, O., Nielsen, M., Liljefors, T., Structure-activity relationships and molecular modeling analysis of flavonoids binding to the benzodiazepine site of the rat brain GABA(A) receptor complex (1999) J. Med. Chem., 42, pp. 4343-4350 
504 |a Enz, R., Cutting, G.R., Molecular composition of GABAC receptors (1998) Vis. Res., 38, pp. 1431-1441 
504 |a Frerking, M., Nicoll, R.A., Synaptic kainate receptors (2000) Curr. Opin. Neurobiol., 10, pp. 342-351 
504 |a Griebel, G., Perrault, G., Tan, S., Schoemaker, H., Sanger, D.J., Pharmacological studies on synthetic flavonoids: Comparison with diazepam (1999) Neuropharmacology, 38, pp. 965-977 
504 |a Gundersen, C.B., Miledi, R., Parker, I., Glutamate and kainate receptors induced by rat brain messenger RNA in Xenopus oocytes (1984) Proc. R. Soc. Lond., B Biol. Sci., 221, pp. 127-143 
504 |a Häberlein, H., Tschiersch, K.P., Sächfer, H.L., Flavonoids from Leptospermum scoparium with affinity to the benzodiazepine receptor characterized by structure activity relationships and in vivo studies of a plant extract (1994) Pharmazie, 49, pp. 912-922 
504 |a Harborne, J.B., Williams, C.A., Advances in flavonoid research since 1992 (2000) Phytochemistry, 55, pp. 481-504 
504 |a Hevers, W., Luddens, H., The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes (1998) Mol. Neurobiol., 18, pp. 35-86 
504 |a Ji, X.-D., Melman, N., Jacobson, K.A., Interactions of flavonoids and other phytochemicals with adenosine receptors (1996) J. Med. Chem., 39, pp. 781-788 
504 |a Koh, D.S., Reid, G., Vogel, W., Activating effect of the flavonoid phloretin on Ca2+-activated K+ channels in myelinated nerve fibers of Xenopus laevis (1994) Neurosci. Lett., 165, pp. 167-170 
504 |a Mall, M., Wissner, A., Seydewitz, H.H., Hubner, M., Kuehr, J., Brandis, M., Greger, R., Kunzelmann, K., Effect of genistein on native epithelial tissue from normal individuals and CF patients and on ion channels expressed in Xenopus oocytes (2000) Br. J. Pharmacol., 130, pp. 1884-1892 
504 |a Marder, M., Viola, H., Wasowski, C., Wolfman, C., Waterman, P.G., Medina, J.H., Paladini, A.C., 6,3′-Dinitroflavone, a novel high affinity ligand for the benzodiazepine receptor with potent anxiolytic properties (1995) Bioorg. Med. Chem. Lett., 5, pp. 2717-2720 
504 |a Marder, M., Paladini, A.C., GABAA-receptor ligands of flavonoid structure (2002) Curr. Top. Med. Chem., 2, pp. 853-867 
504 |a Medina, J.H., Paladini, A.C., Wolfman, C., Levi de Stein, M., Calvo, D.J., Díaz, L.E., Peña, C., Chrysin (5,7-di-OH flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties (1990) Biochem. Pharmacol., 40, pp. 2227-2232 
504 |a Medina, J.H., Viola, H., Wolfman, C., Marder, M., Wasowski, C., Calvo, D.J., Paladini, A.C., Neuroactive flavonoids: New ligands for the benzodiazepine receptors (1998) Phytomedicine, 5, pp. 235-243 
504 |a Middleton, E., Kandaswami, C., The impact of plant flavonoids on mammalian biology: Implications for immunity, inflammation and cancer (1994) The Flavonoids, pp. 619-645. , J.B. Harbone. London: Chapman & Hall 
504 |a Miksicek, R.J., Commonly occurring plant flavonoids have estrogenic activity (1993) Mol. Pharmacol., 44, pp. 37-43 
504 |a Miledi, R., Parker, I., Cl- current induced by injection of calcium into Xenopus oocytes (1984) J. Physiol., 357, pp. 173-183 
504 |a Miledi, R., Parker, I., Sumikawa, K., Transplanting receptors from brain into oocytes (1989) Fidia Research Foundation Neuroscience Award Lecture, pp. 57-89. , J. Smith. New York, NY: Raven Press 
504 |a Movileanu, L., Neagoe, I., Flonta, M.L., Interaction of the antioxidant flavonoid quercetin with planar lipid bilayers (2000) Int. J. Pharm., 205, pp. 135-146 
504 |a Nielsen, M., Frøkjaer, S., Braestrup, C., High affinity of the naturally-occurring biflavonoid, amentoflavone, to brain benzodiazepine receptors in vitro (1988) Biochem. Pharmacol., 37, pp. 3285-3287 
504 |a Oyama, Y., Fuchs, P.A., Katayama, N., Noa, K., Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca2+-loaded brain neurons (1994) Brain Res., 635, pp. 125-129 
504 |a Pattichis, K., Louca, L.L., Jarman, J., Sandler, M., Glover, V., 5-Hydroxytryptamine release from platelets by different red wines: Implications for migraine (1995) Eur. J. Pharmacol., 13, pp. 173-177 
504 |a Picq, M., Cheav, S.V., Prigent, A.F., Effect of two flavonoid compounds on the central nervous system. Analgesic activity (1991) Life Sci., 49, pp. 1979-1988 
504 |a Ramassamy, C., Christen, Y., Clostre, F., Costentin, J., The Ginkgo biloba extract, EGb761, increases synaptosomal uptake of 5-hydroxytryptamine: In-vitro and ex-vivo studies (1992) J. Pharm. Pharmacol., 44, pp. 943-945 
504 |a Salgueiro, J.B., Ardenghi, P., Dias, M., Ferreira, M.B., Izquierdo, I., Medina, J.H., Anxiolytic natural and synthetic flavonoid ligands of the central benzodiazepine receptor have no effect on memory tasks in rats (1997) Pharmacol. Biochem. Behav., 58, pp. 887-891 
504 |a Saponara, S., Sgaragli, G., Fusi, F., Quercetin as a novel activator of L-type Ca(2+) channels in rat tail artery smooth muscle cells (2002) Br. J. Pharmacol., 135, pp. 1819-1827 
504 |a Simmen, U., Schweitzer, C., Burkard, W., Schaffner, W., Lundstrom, K., Hypericum perforatum inhibits the binding of mu- and kappa-opioid receptor expressed with the Semliki Forest virus system (1998) Pharm. Acta Helv., 73, pp. 53-56 
504 |a Speroni, E., Minghetti, A., Neuropharmacological activity of extracts from Passiflora incarnata (1988) Planta Med., 54, pp. 488-491 
504 |a Van Hooft, J.A., Vijverberg, H.P., 5-HT3 receptors and neurotransmitter release in the CNS: A nerve ending story? (2000) Trends Neurosci., 23, pp. 605-610 
504 |a Viola, H., Wasowski, C., Levi de Stein, M., Wolfman, C., Silveira, R., Dajas, F., Medina, J.H., Paladini, A.C., Apigenin, a component of Matricaria recutita flowers is a central benzodiazepine receptors-ligand with anxiolytic effects (1995) Planta Med., 61, pp. 11-14 
504 |a Viola, H., Wolfman, C., Marder, M., Goutman, J.D., Wasowski, C., Calvo, D.J., Izquierdo, I., Medina, J.H., 6-Chlorine-3′-nitroflavone is a potent central benzodiazepine receptor ligand devoid of intrinsic activity (2000) Pharmacol. Biochem. Behav., 65, pp. 313-320 
504 |a Vohora, S.B., Kumar, I., Shah, S.A., Khan, M.S.Y., Effect of biflavonoids of Taxus baccata on the central nervous system (1980) Indian J. Med. Res., 71, pp. 815-820 
504 |a Wolfman, C., Viola, H., Paladini, A.C., Dajas, F., Medina, J.H., Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea (1994) Pharmacol. Biochem. Behav., 47, pp. 1-4 
504 |a Zhang, D., Pan, Z.H., Awobuluyi, M., Lipton, S.A., Structure and function of GABA(C) receptors: A comparison of native versus recombinant receptors (2001) Trends Pharmacol. Sci., 22 (3), pp. 121-132 
520 3 |a The modulation of ionotropic γ-aminobutyric acid (GABA) receptors (GABA-gated Cl- channels) by a group of natural and synthetic flavonoids was studied in electrophysiological experiments. Quercetin, apigenin, morine, chrysin and flavone inhibited ionic currents mediated by α1β1γ2s GABAA and ρ1 GABAC receptors expressed in Xenopus laevis oocytes in the micromolar range. α1β1γ2s GABAA and ρ1 GABAC receptors differ largely in their sensitivity to benzodiazepines, but they were similarly modulated by different flavonoids. Quercetin produced comparable actions on currents mediated by α4β2 neuronal nicotinic acetylcholine, serotonin 5-HT3A and glutamate AMPA/kainate receptors. Sedative and anxiolytic flavonoids, like chrysin or apigenin, failed to potentiate but antagonized α1β1γ2s GABAA receptors. Effects of apigenin and quercetin on α1β1γ2s GABAA receptors were insensitive to the benzodiazepine antagonist flumazenil. Results indicate that mechanism/s underlying the modulation of ionotropic GABA receptors by some flavonoids differs from that described for classic benzodiazepine modulation. © 2003 Elsevier Science B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Inter-American Development Bank 
536 |a Detalles de la financiación: Fondo para la Investigación Científica y Tecnológica, PICT99 5-6800 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 780/98 
536 |a Detalles de la financiación: We would like to thank people that generously provided us with plasmids carrying the different receptor subunits, Dr. Paul Whiting and Dr. Peter Seeburg for α 1 β 1 γ 2s GABA A ; Dr. Ricardo Miledi and Dr. Ataúlfo Martinez-Torres for ρ 1 GABA C and Dr. Stephen Heinemann, Dr. Jim Boulter and Dr. David Johnson for nicotinic α 4 β 2 and 5-HT 3A . We also thank Dr. Mariana del Vas and Dr. Marcelo Rubinstein for reading the manuscript. This work was supported by grants from CONICET (PIP 780/98) and FONCyT (PICT99 5-6800, BID 1201). 
593 |a Inst. Invest. Ing. Genet. Biol. M., Vuelta de Obligado 2490, Capital Federal (1428), Buenos Aires, Argentina 
593 |a Depto. Fisiol., Biol. Molec. y Cel., Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Departamento de Neurociencias, Fac. de Med. y Odontología, Universidad del País Vasco, Leioa, Spain 
690 1 0 |a BENZODIAZEPINE 
690 1 0 |a FLAVONOID 
690 1 0 |a GABA (Γ-AMINOBUTYRIC ACID) 
690 1 0 |a GABAA RECEPTOR 
690 1 0 |a GABAC RECEPTOR 
690 1 0 |a 4 AMINOBUTYRIC ACID A RECEPTOR 
690 1 0 |a 4 AMINOBUTYRIC ACID C RECEPTOR 
690 1 0 |a ACETYLCHOLINE 
690 1 0 |a ALPHA NAPHTHOFLAVONE 
690 1 0 |a AMPA RECEPTOR 
690 1 0 |a ANXIOLYTIC AGENT 
690 1 0 |a APIGENIN 
690 1 0 |a BENZODIAZEPINE 
690 1 0 |a BRAIN RECEPTOR 
690 1 0 |a CHLORIDE CHANNEL 
690 1 0 |a CHRYSIN 
690 1 0 |a FLAVONE 
690 1 0 |a FLAVONOID 
690 1 0 |a FLUMAZENIL 
690 1 0 |a GLUTAMATE RECEPTOR 
690 1 0 |a IONOTROPIC RECEPTOR 
690 1 0 |a KAINIC ACID 
690 1 0 |a KAINIC ACID RECEPTOR 
690 1 0 |a MORIN 
690 1 0 |a NICOTINIC RECEPTOR 
690 1 0 |a QUERCETIN 
690 1 0 |a RECEPTOR SUBUNIT 
690 1 0 |a SEDATIVE AGENT 
690 1 0 |a SEROTONIN 
690 1 0 |a SEROTONIN 3 RECEPTOR 
690 1 0 |a ARTICLE 
690 1 0 |a DRUG ANTAGONISM 
690 1 0 |a DRUG EFFECT 
690 1 0 |a DRUG MECHANISM 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a ION CURRENT 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a RECEPTOR SENSITIVITY 
690 1 0 |a XENOPUS LAEVIS 
653 0 0 |a ro 15 1788, Hoffmann La Roche, United States 
700 1 |a Waxemberg, M.D. 
700 1 |a Doñate-Oliver, F. 
700 1 |a Pomata, P.E. 
700 1 |a Calvo, D.J. 
773 0 |d Elsevier, 2003  |g v. 461  |h pp. 79-87  |k n. 2-3  |p Eur. J. Pharmacol.  |x 00142999  |w (AR-BaUEN)CENRE-1772  |t European Journal of Pharmacology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037436059&doi=10.1016%2fS0014-2999%2803%2901309-8&partnerID=40&md5=237a6769954909274a194d9188b03521  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/S0014-2999(03)01309-8  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00142999_v461_n2-3_p79_Goutman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00142999_v461_n2-3_p79_Goutman  |y Registro en la Biblioteca Digital 
961 |a paper_00142999_v461_n2-3_p79_Goutman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 66008