The hardness of polynomial equation solving

Elimination theory was at the origin of algebraic geometry in the nineteenth century and now deals with the algorithmic solving of multivariate polynomial equation systems over the complex numbers or, more generally, over an arbitrary algebraically closed field. In this paper we investigate the intr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Castro, D.
Otros Autores: Giusti, M., Heintz, J., Matera, G., Pardo, L.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2003
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 21839caa a22016697a 4500
001 PAPER-4795
003 AR-BaUEN
005 20230518203423.0
008 190411s2003 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0042461761 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Castro, D. 
245 1 4 |a The hardness of polynomial equation solving 
260 |c 2003 
270 1 0 |m Castro, D.; Depto. de Ciencias de la Computacion, E.U. Politécnica, Universidad de Alcalá, 28871 Alcalá de Henares, Spain; email: david.castro@uah.es 
506 |2 openaire  |e Política editorial 
504 |a Aldaz, M., Heintz, J., Matera, G., Montaña, J.L., Pardo, L.M., Combinatorial hardness proofs for polynomial evaluation (1998) Lecture Notes in Computer Science, 1450, pp. 67-175. , in Proceedings 23rd International Symposium on Mathematical Foundations of Computer Science, MFoCS'98, (L. Brim et al., eds.); Springer-Verlag, Berlin 
504 |a Aldaz, M., Matera, G., Montaña, J.L., Pardo, L.M., A new method to obtain lower bounds for polynomial evaluation (2001) Theoret. Comput. Sci., 259 (1-2), pp. 577-596 
504 |a Alder, A., Grenzrang und Grenzkomplexität aus algebraischer und topologischer Sicht (1984), PhD thesis, Universität Zürich, Philosophische Fakultät II; Atiyah, M.F., MacDonald, J.G., (1969) Introduction to Commutative Algebra, , Addison-Wesley, Reading, MA 
504 |a Bank, B., Giusti, M., Heintz, J., Mbakop, G.M., Polar varieties and efficient real equation solving: The hypersurface case (1997) J. Complexity, 13 (1), pp. 5-27 
504 |a Bank, B., Giusti, M., Heintz, J., Mbakop, G.M., Polar varieties and efficient real elimination (2001) Math. Z., 238 (1), pp. 115-144 
504 |a Bayer, D., Mumford, D., What can be computed in algebraic geometry? (1993) Symposia Matematica, 34, pp. 1-49. , in Computational Algebraic Geometry and Commutative Algebra, (D. Eisenbud and L. Robbiano, eds.); Cambridge; Instituto Nazionale di Alta Matematica, Cambridge University Press, Cambridge 
504 |a Blum, L., Cucker, F., Shub, M., Smale, S., (1998) Complexity and Real Computation, , Springer-Verlag, New York 
504 |a Borel, E., La définition en mathématiques (1948) Les Grands Courants de la Pensée Mathématique, pp. 24-34. , Cahiers du Sud, Paris 
504 |a Borodin, A., Time space tradeoffs (getting closer to the barriers?) (1993) 4th International Symposium on Algorithms and Computation, ISAAC '93, Hong Kong, December 15-17, 1993, Lecture Notes in Computer Science, 762, pp. 209-220. , Springer-Verlag, Berlin 
504 |a Bruno, N., Heintz, J., Matera, G., Wachenchauzer, R., Functional programming concepts and straight-line programs in computer algebra (2002) Math. Comput. Simulation, 60 (6), pp. 423-473 
504 |a Bürgisser, P., Clausen, M., Shokrollahi, M.A., Algebraic complexity theory (1997) Grundlehren der Mathematischen Wissenschaften, 315. , Springer-Verlag, Berlin 
504 |a Caniglia, L., Galligo, A., Heintz, J., Some new effectivity bounds in computational geometry (1989) Proceedings of AAECC-6, Lecture Notes in Computer Science, 357, pp. 131-152. , in Applied Algebra, Algebraic Algorithms and Error Correcting Codes, (T. Mora et al., eds.); Springer-Verlag, Berlin 
504 |a Canny, J., Some algebraic and geometric problems in PSPACE (1988) Proceedings 20th Annual ACM Symposium on Theory of Computing, Chicago, Illinois, 2-4 May 1988, pp. 460-467. , ACM Press, New York 
504 |a Castaño, B., Heintz, J., Llovet, J., Martínez, R., On the data structure straight-line program and its implementation in symbolic computation (2001) Math. Comput. Simulation, 51, pp. 497-528 
504 |a Castro, D., Hägele, K., Morais, J.E., Pardo, L.M., Kronecker's and Newton's approaches to solving: A first comparison (2001) J. Complexity, 17 (1), pp. 212-303 
504 |a Castro, D., Montaña, J.L., Pardo, L.M., San Martin, J., The distribution of condition numbers of rational data of bounded bit length (2002) Found. Comput. Math., 2 (1), pp. 1-52 
504 |a Chistov, A.L., Grigoriev, D.Y., Subexponential time solving systems of algebraic equations (1983), I, II. LOMI preprints E-9-83, E-10-83, Steklov Institute, Leningrad; Cucker, F., Smale, S., Complexity estimates depending on condition and round-off error (1999) J. Assoc. Comput. Mach., 46 (1), pp. 113-184 
504 |a Davenport, J.H., Heintz, J., Real quantifier elimination is doubly exponential (1988) J. Symbolic Comput., 5, pp. 29-35 
504 |a Dickenstein, A., Fitchas, N., Giusti, M., Sessa, C., The membership problem for unmixed polynomial ideals is solvable in single exponential time (1991) Discrete Appl. Math., 33, pp. 73-94 
504 |a Fitchas, N., Galligo, A., Morgenstern, J., Algorithmes rapides en sequentiel et en parallele pour l'élimination des quantificateurs en Géométrie élementaire (1990) Pub. Math. Univ. Paris VII, 32, pp. 103-145. , in Seminaire sur les structures algébriques ordonnés (F. Delon, M. Dickmann, and D. Gondard, eds.); Paris 
504 |a Fitchas, N., Galligo, A., Morgenstern, J., Precise sequential and parallel complexity bounds for quantifier elimination over algebraically closed fields (1990) J. Pure Appl. Algebra, 67 (1), pp. 1-14 
504 |a Fitchas, N., Giusti, M., Smietanski, F., Sur la complexité du théorème des zéros (1995) Proceedings 2nd International Conference on Non-Linear Optimization and Approximation, Approximation and Optimization, 8, pp. 247-329. , in Approximation and Optimization in the Caribbean II, (J. Guddat et al., ed.); Peter Lange Verlag, Frankfurt am Main 
504 |a Fulton, W., (1984) Intersection Theory, , Springer-Verlag, Berlin 
504 |a Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V., (1994) Discriminants, Resultants, and Multidimensional Determinants, , Birkhäuser, Boston 
504 |a Gianni, P., Mora, T., Algebraic solution of systems of polynomial equations using Gröbner bases (1989) Proceedings of AAECC-5, Menorca, Spain, June 15-19, 1987, Lecture Notes in Computer Science, 356, pp. 247-257. , in Proceedings 5th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, (L. Huguet and A. Poli, eds.); Springer-Verlag, Berlin 
504 |a Giusti, M., Hägele, K., Heintz, J., Morais, J.E., Montaña, J.L., Pardo, L.M., Lower bounds for diophantine approximation (1997) J. Pure Appl. Algebra, 117-118, pp. 277-317 
504 |a Giusti, M., Heintz, J., Algorithmes-disons rapides-pour la décomposition d' une variété algébrique en composantes irréductibles et équidimensionelles (1991) Proceedings of MEGA '90, Progress in Mathematics, 94, pp. 169-194. , Effective Methods in Algebraic Geometry (T. Mora and C. Traverso, eds.); Birkhäuser, Basel 
504 |a Giusti, M., Heintz, J., La détermination des points isolés et de la dimension d'une variété algébrique peut se faire en temps polynomial (1993) Symposia Matematica, 34, pp. 216-256. , in Computational Algebraic Geometry and Commutative Algebra, (D. Eisenbud and L. Robbiano, eds.); Cambridge University Press, Cambridge 
504 |a Giusti, M., Heintz, J., Kronecker's smart, little black-boxes (2001) FoCM'99, Oxford 1999, London Mathematical Society Lecture Notes Series, 284, pp. 69-104. , in Proceedings of Foundations of Computational Mathematics, (A. Iserles, R. Devore, and E. Süli, eds.); Cambridge University Press, Cambridge 
504 |a Giusti, M., Heintz, J., Morais, J.E., Morgenstern, J., Pardo, L.M., Straight-line programs in geometric elimination theory (1998) J. Pure Appl. Algebra, 124, pp. 101-146 
504 |a Giusti, M., Heintz, J., Morais, J.E., Pardo, L.M., When polynomial equation systems can be solved fast? (1995) Proceedings AAECC-11, Lecture Notes in Computer Science, 948, pp. 205-231. , in Applied Algebra, Algebraic Algorithms and Error Correcting Codes, (G. Cohen, H. Giusti, and T. Mora, eds.); Springer-Verlag, Berlin 
504 |a Giusti, M., Heintz, J., Morais, J.E., Pardo, L.M., Le rôle des structures de données dans les problèmes d'élimination (1997) C. R. Acad. Sci. Paris, 325, pp. 1223-1228 
504 |a Giusti, M., Heintz, J., Sabia, J., On the efficiency of effective nullstellensätze (1993) Comput. Complexity, 3, pp. 56-95 
504 |a Giusti, M., Lecerf, G., Salvy, B., A gröbner-free alternative for polynomial system solving (2001) J. Complexity, 17 (1), pp. 154-211 
504 |a Giusti, M., Schost, E., Solving some over-determined systems (1999) ISSAC'99, July 28-31, 1999, Vancouver, Canada, pp. 1-8. , in Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, (S. Dooley, ed.); ACM Press, New York 
504 |a Goldberg, P., Jerrum, M., Bounding the vapnik-chervonenkis dimension of concept classes parametrized by real numbers (1995) Machine Learning, 18, pp. 131-148 
504 |a Grigoriev, D., Vorobjov Jr., N.N., Solving systems of polynomial inequalities in sub-exponential time (1988) J. Symbolic Comput., 5 (1-2), pp. 37-64 
504 |a Hägele, K., Morais, J.E., Pardo, L.M., Sombra, M., On the intrinsic complexity of the arithmetic nullstellensatz (2000) J. Pure Appl. Algebra, 146 (2), pp. 103-183 
504 |a Heintz, J., Definability bounds of first-order theories of algebraically closed fields (1979) FCT'79, pp. 160-166. , (Extended abstract), in Proceedings of Fundamentals of Computation Theory, (L. Budach, ed.); Berlin/Wendisch-Rietz, 1979; Akademie Verlag, Berlin 
504 |a Heintz, J., Definability and fast quantifier elimination in algebraically closed fields (1983) Theoret. Comput. Sci., 24 (3), pp. 239-277 
504 |a Heintz, J., On the computational complexity of polynomials and bilinear mappings (1989) Proceedings of AAECC-5, Menorca, Spain, June 15-19, 1987, Lecture Notes in Computer Science, 356, pp. 269-300. , A survey in Proceedings 5th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (L. Huguet and A. Poli, eds.); Springer-Verlag, Berlin 
504 |a Heintz, J., Krick, T., Puddu, S., Sabia, J., Waissbein, A., Deformation techniques for efficient polynomial equation solving (2000) J. Complexity, 16 (1), pp. 70-109 
504 |a Heintz, J., Matera, G., Pardo, L.M., Wachenchauzer, R., The intrinsic complexity of parametric elimination methods (1998) Electron. J. SADIO, 1 (1), pp. 37-51 
504 |a Heintz, J., Matera, G., Waissbein, A., On the time-space complexity of geometric elimination procedures (2001) Appl. Algebra Engng. Commun. Comput., 11 (4), pp. 239-296 
504 |a Heintz, J., Roy, M.-F., Solernó, P., On the complexity of semialgebraic sets (1989) Proceedings of the IFIP 11th World Computer Congress, San Francisco, USA, August 28-September 1, 1989, pp. 293-298. , in Information Processing 89, (G. Ritter, ed.); North-Holland/IFIP, Amsterdam 
504 |a Heintz, J., Roy, M.-F., Solernó, P., Sur la complexité du principe de Tarski-Seidenberg (1990) Bull. Soc. Math. France, 118 (1), pp. 101-126 
504 |a Heintz, J., Schnorr, C.P., Testing polynomials which are easy to compute (1982) International Symposium on Logic and Algorithmic, Zurich 1980, Monographie de l'Enseignement Mathématique, 30, pp. 237-254 
504 |a Heintz, J., Sieveking, M., Absolute primality of polynomials is decidable in random polynomial-time in the number of variables (1981) Lecture Notes in Computer Science, 115, pp. 16-28. , in ICALP 81: Proceedings 8th International Colloquium on Automata, Languages and Programming, Acre (Akko), Israel July 13-17, 1981, (Shimon Even and Oded Kariv, eds.); Springer-Verlag, Berlin 
504 |a Ierardi, D., Quantifier elimination in the theory of an algebraically closed field (1989) Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, Seattle, Washington, 15-17 May 1989, pp. 138-147. , ACM Press, New York 
504 |a Iversen, B., Generic local structure of the morphisms in cummutative algebra (1973) Lecture Notes in Mathematics, 310. , Springer-Verlag, Berlin 
504 |a Jerónimo, G., Sabia, J., On the number of sets definable by polynomials (2000) J. Algebra, 227 (2), pp. 633-644 
504 |a Kaltofen, E., Greatest common divisors of polynomials given by straight-line programs (1988) J. Assoc. Comput. Mach., 35 (1), pp. 231-264 
504 |a Kollár, J., (1999) Rational Curves on Algebraic Varieties, , Springer-Verlag, New York 
504 |a Krick, T., Pardo, L.M., Une approche informatique pour l'approximation diophantienne (1994) C. R. Acad. Sci. Paris, 318 (1), pp. 407-412 
504 |a Krick, T., Pardo, L.M., A computational method for diophantine approximation (1996) Proceedings of MEGA'94, Progress in Mathematics, 143, pp. 193-254. , in Algorithms in Algebraic Geometry and Applications, (L. González-Vega and T. Recio, eds.); Birkhäuser, Basel 
504 |a Kronecker, L., Grundzüge einer arithmetischen Theorie der algebraischen Grössen (1882) J. Reine Angew. Math., 92, pp. 1-122 
504 |a Lang, S., (1958) Introduction to Algebraic Geometry, , Interscience, New York 
504 |a Lang, S., (1993) Algebra, 3rd Ed., , Addison-Wesley, Reading, MA 
504 |a Lecerf, G., (2000) Kronecker 0.16beta-2. Reference Manual, , http://kronecker.medicis.polytechnique.fr/, Laboratoire GAGE, École Polytechnique, Palaiseau, France 
504 |a Lecerf, G., Quadratic Newton iteration for systems with multiplicity (2002) Found. Comput. Math., 2 (3), pp. 247-293 
504 |a Li, M., Vitányi, P., (1993) Introduction to Kolmogorov Complexity and Its Applications, , Springer-Verlag, Berlin 
504 |a Matera, G., Probabilistic algorithms for geometric elimination (1999) Appl. Algebra Engrg. Commun. Comput., 9 (6), pp. 463-520 
504 |a Matsumura, H., (1980) Commutative Algebra, , Benjamin, New York 
504 |a Montaña, J.L., Pardo, L.M., Lower bounds for arithmetic networks (1993) Appl. Algebra Engrg. Commun. Comput., 4 (1), pp. 1-24 
504 |a Mourrain, B., Pan, V., Solving special polynomial systems by using structural matrices and algebraic residues (1997) Proceedings Foundations of Computational Mathematics (FOCM'97), pp. 287-304. , (F. Crucker and M. Shub, eds.); Springer-Verlag, Berlin 
504 |a Mumford, D., The red book of varieties and schemes (1988) Lecture Notes in Mathematics, 1358. , 1st edn., Springer-Verlag, Berlin 
504 |a Pardo, L.M., How lower and upper complexity bounds meet in elimination theory (1995) Proceedings of AAECC-11, Lecture Notes in Computer Science, 948, pp. 33-69. , in Applied Algebra, Algebraic Algorithms and Error Correcting Codes, (G. Cohen, H. Giusti, and T. Mora, eds.); Springer-Verlag, Berlin 
504 |a Paterson, M., Stockmeyer, L.J., On the number of nonscalar multiplications necessary to evaluate polynomials (1973) SIAM J. Comput., 2 (1), pp. 60-66 
504 |a Puddu, S., Sabia, J., An effective algorithm for quantifier elimination over algebraically closed fields using straight-line programs (1998) J. Pure Appl. Algebra, 129 (2), pp. 173-200 
504 |a Renegar, J., On the computational complexity and geometry of the first-order theory of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals (1992) J. Symbol. Comput., 13 (3), pp. 255-300 
504 |a Rojas, J.M., Computing complex dimension faster and deterministically (2000), (extended abstract), preprint arXiv:math.AG/0005028; Schnorr, C.P., Improved lower bounds on the number of multiplications/divisions which are necessary to evaluate polynomials (1978) Theoret. Comput. Sci., 7, pp. 251-261 
504 |a Schönhage, A., An elementary proof for strassen's degree bound (1976) Theoret. Comput. Sci., 3, pp. 267-272 
504 |a Schost, E., Computing parametric geometric resolutions (2003) Appl. Algebra Engrg. Commun. Comput., 13 (5), pp. 349-393 
504 |a Shafarevich, I.R., (1994) Basic Algebraic Geometry, , Springer-Verlag 
504 |a Shub, M., Smale, S., Complexity of Bézout's theorem I: Geometric aspects (1993) J. Amer. Math. Soc., 6 (2), pp. 459-501 
504 |a Shub, M., Smale, S., Complexity of Bézout's theorem II: Volumes and probabilities (1993) Progress in Mathematics, 109, pp. 267-285. , in Computational Algebraic Geometry, (F. Eyssette and A. Galligo, eds.); Birkhäuser, Basel 
504 |a Shub, M., Smale, S., Complexity of Bézout's theorem III: Condition number and packing (1993) J. Complexity, 9, pp. 4-14 
504 |a Shub, M., Smale, S., Complexity of Bézout's theorem V: Polynomial time (1994) Theoret. Comput. Sci., 133, pp. 141-164 
504 |a Shub, M., Smale, S., Complexity of Bézout's theorem IV: Probability of success (1996) SIAM J. Numer. Anal., 33, pp. 141-164 
504 |a Strassen, V., Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationspolynomen (1973) Numer. Math., 2, pp. 238-251 
504 |a Strassen, V., Vermeidung von Divisionen (1973) Crelle J. Reine Angew. Math., 264, pp. 182-202 
504 |a Vapnik, V.N., The nature of statistical learning theory Statistics for Engineering and Information Science, 2nd Ed., , Springer-Verlag, New York, 2000 
504 |a Vogel, W., (1984) Results on Bezout's Theorem, , Tata Institute of Fundamental Research, Springer-Verlag, New York 
504 |a Von Zur Gathen, J., Parallel arithmetic computations: A survey (1986) Lecture Notes in Computer Science, 233, pp. 93-112. , in Proceedings of the 12th Symposium on Mathematical Foundations of Computer Science, Bratislava, Czechoslovakia, August 25-29, 1996, (B. Rovan J. Gruska and J. Wiedermann, eds.); Springer-Verlag, Berlin 
504 |a Von Zur Gathen, J., Parallel linear algebra (1993) Synthesis of Parallel Algorithms, , (John H. Reif, ed.), Morgan Kaufmann, Los Altas, CA 
504 |a Weispfening, V., The complexity of linear problems in fields (1988) J. Symbolic Comput., 5, pp. 3-27 
504 |a Zariski, O., Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields (1951) Mem. Amer. Math. Soc., 5, pp. 1-90 
520 3 |a Elimination theory was at the origin of algebraic geometry in the nineteenth century and now deals with the algorithmic solving of multivariate polynomial equation systems over the complex numbers or, more generally, over an arbitrary algebraically closed field. In this paper we investigate the intrinsic sequential time complexity of universal elimination procedures for arbitrary continuous data structures encoding input and output objects of elimination theory (i.e., polynomial equation systems) and admitting the representation of certain limit objects. Our main result is the following: let there be given such a data structure and together with this data structure a universal elimination algorithm, say P, solving arbitrary parametric polynomial equation systems. Suppose that the algorithm P avoids "unnecessary" branchings and that P admits the efficient computation of certain natural limit objects (as, e.g., the Zariski closure of a given constructible algebraic set or the parametric greatest common divisor of two given algebraic families of univariate polynomials). Then P cannot be a polynomial time algorithm. The paper contains different variants of this result and discusses their practical implications.  |l eng 
593 |a Depto. de Ciencias de la Computacion, E.U. Politécnica, Universidad de Alcalá, 28871 Alcalá de Henares, Spain 
593 |a Laboratoire GAGE, Ecole Polytechnique, F-91128 Palaiseau Cedex, France 
593 |a Depto. Matematicas Estadistica Comp., Facultad de Ciencias, Universidad de Cantabria, E-39071 Santander, Spain 
593 |a Departamento de Matemáticas, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, 1428 Buenos Aires, Argentina 
593 |a CONICET, Argentina 
593 |a Instituto de Desarrollo Humano, Univ. Nacional de General Sarmiento, Campus Universitario, Jose M. Gutierrez 1150, 1613 Los Polvor. Pcia. Buenos Aires, Argentina 
690 1 0 |a COMPLEXITY 
690 1 0 |a CONTINUOUS DATA STRUCTURE 
690 1 0 |a ELIMINATION THEORY 
690 1 0 |a HOLOMORPHIC AND CONTINUOUS ENCODING 
690 1 0 |a POLYNOMIAL EQUATION SOLVING 
690 1 0 |a ARITHMETIC CIRCUITS 
690 1 0 |a BEZOUT NUMBER 
690 1 0 |a ELIMINATION THEORY 
690 1 0 |a GEOMETRIC OBJECTS 
690 1 0 |a ALGORITHMS 
690 1 0 |a COMPUTATIONAL COMPLEXITY 
690 1 0 |a DATA STRUCTURES 
690 1 0 |a DIGITAL ARITHMETIC 
690 1 0 |a ENCODING (SYMBOLS) 
690 1 0 |a GEOMETRY 
690 1 0 |a GRAPH THEORY 
690 1 0 |a PROBLEM SOLVING 
690 1 0 |a TOPOLOGY 
690 1 0 |a POLYNOMIALS 
650 1 7 |2 spines  |a ALGEBRA 
700 1 |a Giusti, M. 
700 1 |a Heintz, J. 
700 1 |a Matera, G. 
700 1 |a Pardo, L.M. 
773 0 |d 2003  |g v. 3  |h pp. 347-420  |k n. 4  |p Found. Comput. Math.  |x 16153375  |t Foundations of Computational Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0042461761&doi=10.1007%2fs10208-002-0065-7&partnerID=40&md5=8d4ca47a62332b31743e3bfeccd94e00  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10208-002-0065-7  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_16153375_v3_n4_p347_Castro  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16153375_v3_n4_p347_Castro  |y Registro en la Biblioteca Digital 
961 |a paper_16153375_v3_n4_p347_Castro  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 65748