Magnetohydrodynamic flows of conducting liquids in divergent-convergent channels

We show that the full set of magnetohydrodynamic (MHD) equations, for resistive and viscous incompressible fluids, allows in cylindrical coordinates an exact reduction to a pair of coupled, nonlinear, ordinary differential equations (ODE) for two scalar potentials. The ODEs represent self-similar MH...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gnavi, Graciela Delia
Otros Autores: Gratton, Fausto Tulio Livio
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: International Information and Engineering Technology Association 2003
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04356caa a22005297a 4500
001 PAPER-4724
003 AR-BaUEN
005 20250424085558.0
008 190411s2003 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0345171436 
030 |a HETEE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gnavi, Graciela Delia 
245 1 0 |a Magnetohydrodynamic flows of conducting liquids in divergent-convergent channels 
260 |b International Information and Engineering Technology Association  |c 2003 
270 1 0 |m Gnavi, G.; Instituto de Fisica del Plasma, CONICET-FCEyN/UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
504 |a Berker, R., Fluid visqueux incompressible (1963) Handbuch der Physik, 8 (2). , Strömungsmechanik II, Springer-Verlag, Berlin 
504 |a Wang, C.Y., (1991) Annual Reviews of Fluid Mechanics, 23, p. 159 
504 |a Moreau, R., (1990) Magnetohydrodynamics, , Kluwer Academic Publishers, Dordrecht 
504 |a Gratton, F.T., Bender, L., Gnavi, G., (1996) Brazilian Journal of Physics, 26 (3), p. 637 
504 |a Batchelor, G., (1967) Introduction to Fluid Dynamics, , Cambridge University Press 
504 |a Banks, W.H.H., Drazin, P.G., Zaturska, M.B., (1988) Journal of Fluid Mechanics, 186, p. 559 
504 |a Moffat, H.K., Duffy, B.R., (1980) Journal of Fluid Mechanics, 96, p. 299 
504 |a Rosenhead, L., (1940) Proceedings of the Royal Society A, 175, p. 436 
504 |a Fraenkel, L.E., (1962) Proceedings of the Royal Society A, 267, p. 119 
504 |a Ferro, S., Gnavi, G., (2000) Physics of Fluids, 12, p. 797 
506 |2 openaire  |e Política editorial 
520 3 |a We show that the full set of magnetohydrodynamic (MHD) equations, for resistive and viscous incompressible fluids, allows in cylindrical coordinates an exact reduction to a pair of coupled, nonlinear, ordinary differential equations (ODE) for two scalar potentials. The ODEs represent self-similar MHD flows in channels, bounded by non-parallel plane walls, intersecting on the z-axis, akin to the Jeffery-Hamel flows of non-conducting fluids. We consider the case in which an external current, flows along the z-axis, and exerts a body force that controls the flow. Only one nonlinear ODE governs the solution in this case. Besides the Reynolds number (Re) and the angle of the walls, two other non dimensional parameters determine the solutions, the magnetic Reynolds number (Rm), and the Hartmann number (Ha). We give a preliminary study of the properties of the high resistivity regime, in which the Hartmann number becomes important. The main result is that for Ha larger than 2 the flow reversal near the walls, which is a typical feature of channels with Ha=0 and Re∼O(1) or larger, tends to disappear. Moderate values of Ha∼6 are sufficient to suppress flow reversal up to Re∼25 for angular widths of the channel as large as 240°. The configuration may be of interest for applications to flow control of liquid metals, and industrial treatment of molten metals.  |l eng 
593 |a Instituto de Fisica del Plasma, CONICET-FCEyN/UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a CHANNEL FLOW 
690 1 0 |a FLOW CONTROL 
690 1 0 |a LIQUID METALS 
690 1 0 |a NAVIER STOKES EQUATIONS 
690 1 0 |a ORDINARY DIFFERENTIAL EQUATIONS 
690 1 0 |a PARTIAL DIFFERENTIAL EQUATIONS 
690 1 0 |a REYNOLDS NUMBER 
690 1 0 |a DIVERGENT-CONVERGENT CHANNELS 
690 1 0 |a MAGNETOHYDRODYNAMIC FLOWS 
690 1 0 |a MAGNETOHYDRODYNAMICS 
700 1 |a Gratton, Fausto Tulio Livio 
773 0 |d International Information and Engineering Technology Association, 2003  |g v. 21  |h pp. 99-107  |k n. 1  |p Int. J. Heat Technol.  |x 03928764  |t International Journal of Heat and Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0345171436&partnerID=40&md5=984789e911cca4fe96c7d853f40d9963  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03928764_v21_n1_p99_Gnavi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03928764_v21_n1_p99_Gnavi  |y Registro en la Biblioteca Digital 
961 |a paper_03928764_v21_n1_p99_Gnavi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 65677