Magnetohydrodynamic flows of conducting liquids in divergent-convergent channels
We show that the full set of magnetohydrodynamic (MHD) equations, for resistive and viscous incompressible fluids, allows in cylindrical coordinates an exact reduction to a pair of coupled, nonlinear, ordinary differential equations (ODE) for two scalar potentials. The ODEs represent self-similar MH...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
International Information and Engineering Technology Association
2003
|
| Acceso en línea: | Registro en Scopus Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 04356caa a22005297a 4500 | ||
|---|---|---|---|
| 001 | PAPER-4724 | ||
| 003 | AR-BaUEN | ||
| 005 | 20250424085558.0 | ||
| 008 | 190411s2003 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-0345171436 | |
| 030 | |a HETEE | ||
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Gnavi, Graciela Delia | |
| 245 | 1 | 0 | |a Magnetohydrodynamic flows of conducting liquids in divergent-convergent channels |
| 260 | |b International Information and Engineering Technology Association |c 2003 | ||
| 270 | 1 | 0 | |m Gnavi, G.; Instituto de Fisica del Plasma, CONICET-FCEyN/UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina |
| 504 | |a Berker, R., Fluid visqueux incompressible (1963) Handbuch der Physik, 8 (2). , Strömungsmechanik II, Springer-Verlag, Berlin | ||
| 504 | |a Wang, C.Y., (1991) Annual Reviews of Fluid Mechanics, 23, p. 159 | ||
| 504 | |a Moreau, R., (1990) Magnetohydrodynamics, , Kluwer Academic Publishers, Dordrecht | ||
| 504 | |a Gratton, F.T., Bender, L., Gnavi, G., (1996) Brazilian Journal of Physics, 26 (3), p. 637 | ||
| 504 | |a Batchelor, G., (1967) Introduction to Fluid Dynamics, , Cambridge University Press | ||
| 504 | |a Banks, W.H.H., Drazin, P.G., Zaturska, M.B., (1988) Journal of Fluid Mechanics, 186, p. 559 | ||
| 504 | |a Moffat, H.K., Duffy, B.R., (1980) Journal of Fluid Mechanics, 96, p. 299 | ||
| 504 | |a Rosenhead, L., (1940) Proceedings of the Royal Society A, 175, p. 436 | ||
| 504 | |a Fraenkel, L.E., (1962) Proceedings of the Royal Society A, 267, p. 119 | ||
| 504 | |a Ferro, S., Gnavi, G., (2000) Physics of Fluids, 12, p. 797 | ||
| 506 | |2 openaire |e Política editorial | ||
| 520 | 3 | |a We show that the full set of magnetohydrodynamic (MHD) equations, for resistive and viscous incompressible fluids, allows in cylindrical coordinates an exact reduction to a pair of coupled, nonlinear, ordinary differential equations (ODE) for two scalar potentials. The ODEs represent self-similar MHD flows in channels, bounded by non-parallel plane walls, intersecting on the z-axis, akin to the Jeffery-Hamel flows of non-conducting fluids. We consider the case in which an external current, flows along the z-axis, and exerts a body force that controls the flow. Only one nonlinear ODE governs the solution in this case. Besides the Reynolds number (Re) and the angle of the walls, two other non dimensional parameters determine the solutions, the magnetic Reynolds number (Rm), and the Hartmann number (Ha). We give a preliminary study of the properties of the high resistivity regime, in which the Hartmann number becomes important. The main result is that for Ha larger than 2 the flow reversal near the walls, which is a typical feature of channels with Ha=0 and Re∼O(1) or larger, tends to disappear. Moderate values of Ha∼6 are sufficient to suppress flow reversal up to Re∼25 for angular widths of the channel as large as 240°. The configuration may be of interest for applications to flow control of liquid metals, and industrial treatment of molten metals. |l eng | |
| 593 | |a Instituto de Fisica del Plasma, CONICET-FCEyN/UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a CHANNEL FLOW |
| 690 | 1 | 0 | |a FLOW CONTROL |
| 690 | 1 | 0 | |a LIQUID METALS |
| 690 | 1 | 0 | |a NAVIER STOKES EQUATIONS |
| 690 | 1 | 0 | |a ORDINARY DIFFERENTIAL EQUATIONS |
| 690 | 1 | 0 | |a PARTIAL DIFFERENTIAL EQUATIONS |
| 690 | 1 | 0 | |a REYNOLDS NUMBER |
| 690 | 1 | 0 | |a DIVERGENT-CONVERGENT CHANNELS |
| 690 | 1 | 0 | |a MAGNETOHYDRODYNAMIC FLOWS |
| 690 | 1 | 0 | |a MAGNETOHYDRODYNAMICS |
| 700 | 1 | |a Gratton, Fausto Tulio Livio | |
| 773 | 0 | |d International Information and Engineering Technology Association, 2003 |g v. 21 |h pp. 99-107 |k n. 1 |p Int. J. Heat Technol. |x 03928764 |t International Journal of Heat and Technology | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0345171436&partnerID=40&md5=984789e911cca4fe96c7d853f40d9963 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_03928764_v21_n1_p99_Gnavi |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03928764_v21_n1_p99_Gnavi |y Registro en la Biblioteca Digital |
| 961 | |a paper_03928764_v21_n1_p99_Gnavi |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 65677 | ||