Muscarinic autoreceptors related with calcium channels in the strong and weak inputs at polyinnervated developing rat neuromuscular junctions

Using intracellular recording, we studied how several muscarinic antagonists affected the evoked endplate potentials in singly and dually innervated endplates of the levator auris longus muscle from 3 to 6-day-old rats. In dually innervated fibers, a second endplate potential (EPP) may appear after...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Santafé, M.M
Otros Autores: Salon, I., Garcia, N., Lanuza, M.A, Uchitel, O.D, Tomàs, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2004
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17604caa a22015497a 4500
001 PAPER-4708
003 AR-BaUEN
005 20230518203417.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0344255659 
024 7 |2 cas  |a acetylcholine, 51-84-3, 60-31-1, 66-23-9; calcium, 7440-70-2, 14092-94-5; methoctramine, 104807-46-7; otenzepad, 100158-38-1, 102394-31-0; pirenzepine, 28797-61-7, 29868-97-1; tropicamide, 1508-75-4 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NRSCD 
100 1 |a Santafé, M.M. 
245 1 0 |a Muscarinic autoreceptors related with calcium channels in the strong and weak inputs at polyinnervated developing rat neuromuscular junctions 
260 |b Elsevier Ltd  |c 2004 
270 1 0 |m Santafé, M.M.; Unitat d'Histologia i Neurobiologia, Facultat Med. i Ciencies de la Salut, Universitat Rovira i Virgili, carrer St. Llorenç num 21, 43201 Reus, Spain; email: msm@fmcs.urv.es 
506 |2 openaire  |e Política editorial 
504 |a Allen, T.G.J., The role of N-, Q- and R-type Ca2+ channels in feedback inhibition of ACh release from rat basal forebrain neurones (1999) J Physiol Lond, 515, pp. 93-107 
504 |a Barry, J.A., Ribschester, R.R., Persistent polyneuronal innervation in partially denervated rat muscle after reinnervation and recovery from prolonged nerve conduction block (1995) J Neurosci, 15, pp. 6327-6339 
504 |a Bennett, M.R., Pettigrew, A.G., The formation of synapses in striated muscle during development (1974) J Physiol, 241, pp. 515-545 
504 |a Benoit, P., Changeux, J.P., Consequences of tenotomy on the evolution of multiinnervation in developing rat soleus muscle (1975) Brain Res, 99, pp. 354-358 
504 |a Bowersox, S.S., Miljanich, G.P., Sugiura, Y., Li, C., Nadasdi, L., Hoffman, B.B., Ramachandran, J., Ko, C.P., Differential blockade of voltage-sensitive calcium channels at the mouse neuromuscular junction by novel ω-conopeptides and ω-Aga-IVA (1995) J Pharmacol Exp Ther, 273, pp. 248-256 
504 |a Brown, M.C., Jansen, J.K.S., Van Essen, D.C., Polyneuronal innervation of skeletal muscle in newborn rats and its elimination during maturation (1976) J Physiol Lond, 261, pp. 387-422 
504 |a Caulfield, M.P., Muscarinic receptors: Characterization, coupling and function (1993) Pharmacol Ther, 58, pp. 319-379 
504 |a Colman, H., Nabekura, J., Lichtman, J.W., Alterations in synaptic strength preceding axon withdrawal (1997) Science, 275, pp. 356-361 
504 |a Connold, A.L., Evers, J.V., Vrbovà, G., Effect of low calcium and protease inhibitors on synapse elimination during postnatal development in the rat soleus muscle (1986) Dev Brain Res, 28, pp. 99-107 
504 |a Costanzo, E.M., Barry, J.A., Ribchester, R.R., Competition at silent synapses in reinnervated skeletal muscle (2000) Nat Neurosci, 3, pp. 694-700 
504 |a Culican, S.M., Nelson, C.C., Lichman, J.W., Axon withdrawal during synapse elimination at the neuromuscular junction is accompanied by disassembly of the postsynaptic specialization and withdrawal of Schwann cell processes (1998) J Neurosci, 18, pp. 4953-4965 
504 |a Day, N.C., Wood, S.J., Ince, P.G., Volsen, S.G., Smith, W., Slater, C.R., Shaw, P.J., Differential localization of voltage-dependent calcium channel alpha1 subunits at the human and rat neuromuscular junction (1997) J Neurosci, 17, pp. 6226-6235 
504 |a Duxson, M.J., Vrbova, G., Inhibition of acetylcholinesterase accelerates axon terminal withdrawal at the developing rat neuromuscular junction (1985) J Neurocytol, 14, pp. 337-363 
504 |a Frank, E., Gautvik, K., Sommerschild, H., Persistence of junctional acetylcholine receptors following denervation (1976) Cold Spring Harbor Symp Quant Biol, 40, pp. 275-281 
504 |a Forscher, P., Calcium and polyphosphoinositide control of cytoskeletal dynamics (1989) Trends Neurosci, 12, pp. 468-474 
504 |a Gan, W.B., Lichtman, J.W., Synaptic segregation at the developing neuromuscular junction (1998) Science, 282, pp. 1508-1511 
504 |a Hong, S.J., Chang, C.C., Inhibition of acetylcholine release from mouse motor nerve by a P-type calcium channel blocker, ω-agatoxin IVA (1995) J Physiol Lond, 482, pp. 283-290 
504 |a Huang, C.F., Flucher, B., Schmidt, M., Stroud, S.K., Schmidt, J., Depolarization-transcription signals in skeletal muscle use calcium flux through L channels, but bypass the sarcoplasmic reticulum (1994) Neuron, 13, pp. 167-177 
504 |a Huang, C.F., Lee, Y.S., Schmidt, M.M., Schmidt, J., Rapid inhibition of myogenin-driven acetylcholine receptor subunit gene transcription (1994) EMBO J, 13, pp. 634-640 
504 |a Hubbard, J.J., Wilson, D.F., Neuromuscular transmission in a mammalian preparation in absence of the blocking drugs and the effect of D-tubocurarine (1973) J Physiol Lond, 228, pp. 307-327 
504 |a Jansen, J.K.S., Fladby, T., The perinatal reorganization of the innervation of skeletal muscle in mammals (1990) Prog Neurobiol, 34, pp. 39-90 
504 |a Jia, M., Li, M.X., Dunlap, V., Nelson, P.G., The thrombin receptor mediates functional activity-dependent neuromuscular synapse reduction via protein kinase C activation in vitro (1999) J Neurobiol, 38, pp. 369-381 
504 |a Katz, B., Miledi, R., Further study of the role of calcium in synaptic transmission (1970) J Physiol Lond, 207, pp. 789-801 
504 |a Keller-Peck, C.R., Walsh, M.K., Gan, W.-B., Feng, G., Sanes, J., Lichtman, J.W., Asynchronous synapse elimination in neonatal motor units: Studies using GFP transgenic mice (2001) Neuron, 31, pp. 381-394 
504 |a Komuro, H., Rakic, P., Intracellular Ca2+ fluctuations modulate the rate of neuronal migration (1996) Neuron, 17, pp. 275-285 
504 |a Kopp, D.M., Perkel, D.J., Balice-Gordon, R.J., Disparity in neurotransmitter release probability among competing inputs during neuromuscular synapse elimination (2000) J Neurosci, 20, pp. 8771-8779 
504 |a Kuffler, D., Thompson, W., Jansen, J.K., The elimination of synapses in multiply-innervated skeletal muscle fibres of the rat: Dependence on distance between endplates (1977) Brain Res, 138, pp. 353-358 
504 |a Lanuza, M.A., Garcia, N., Santafé, M.M., Nelson, P.G., Fenoll-Brunet, M.R., Tomàs, J., Pertussis toxin-sensitive G-protein and protein kinase C activity are involved in normal synapse elimination in the neonatal rat muscle (2001) J Neurosci Res, 63, pp. 330-340 
504 |a Lanuza, M.A., Garcia, N., Santafé, M.M., González, C.M., Alonso, I., Nelson, P.G., Tomàs, J., Pre- and postsynaptic maturation of the neuromuscular junction during neonatal synapse elimination process depends on protein kinase C (2002) J Neurosci Res, 67, pp. 607-617 
504 |a Lichtman, J.W., Balice-Gordon, R.J., Understanding synaptic competition in theory and in practice (1990) J Neurobiol, 21, pp. 99-106 
504 |a Minic, J., Molgo, J., Karlsson, E., Krejci, E., Regulation of acetylcholine release by muscarinic receptors at the mouse neuromuscular junction depends on the activity of acetylcholinesterase (2002) Eur J Neurosci, 15, pp. 439-448 
504 |a Mogul, D.J., Adams, M.E., Fox, A.P., Differential activation of adenosine receptors decreases N-type but potentiates P-type Ca2+ current in hippocampal CA3 neurons (1993) Neuron, 10, pp. 327-334 
504 |a Murphy, T.H., Worley, P.F., Baraban, J.M., L-type voltage-sensitive channels mediate synaptic activation of immediate early genes (1991) Neuron, 7, pp. 625-635 
504 |a O'Brien, R.A.D., Ostberg, A.J.C., Vrbovà, G., Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle (1978) J Physiol Lond, 282, pp. 571-582 
504 |a O'Brien, R.A.D., Östberg, A.J.C., Vrbovà, G., Protease inhibitors reduce the loss of nerve terminals induced by activity and calcium in developing rat soleus muscles (1984) Neuroscience, 12, pp. 637-646 
504 |a Personius, K.E., Balice-Gordon, R.J., Loss of correlated motor neuron activity during synaptic competition at developing neuromuscular synapses (2001) Neuron, 31, pp. 395-408 
504 |a Protti, D., Uchitel, O.D., P/Q-type calcium channels activate neighboring calcium-dependent potassium channels in mouse motor nerve terminals (1993) Pflügers Arch, 434. , 496-412 
504 |a Redfern, P.A., Neuromuscular transmission in newborn rats (1970) J Physiol Lond, 209, pp. 701-709 
504 |a Ribchester, R., Barry, J., Spatial versus consumptive competition at polyneuronally innervated neuromuscular junctions (1994) Exp Physiol, 79, pp. 465-494 
504 |a Robitaille, R., Jahromi, B.S., Charlton, M.P., Muscarinic Ca2+ responses resistant to muscarinic antagonists at presynaptic Schwann cells of the frog neuromuscular junctions (1997) J Physiol Lond, 504, pp. 337-347 
504 |a Robitaille, R., Modulation of synaptic efficacy and dynaptic depression by glial cells at the frog neuromuscular junction (1998) Neuron, 21, pp. 847-855 
504 |a Rosato-Siri, M.D., Uchitel, O.D., Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions (1999) J Physiol Lond, 514, pp. 533-540 
504 |a Rouse, S.T., Levey, A.I., Muscarinic acetylcholine receptor immunoreactivity after hippocampal commissural/associational pathway lesions: Evidence for multiple presynaptic receptor subtypes (1997) J Comp Neurol, 380, pp. 382-394 
504 |a Schliwa, M., Euteneuer, U., Bulinski, J.C., Izant, J.G., Calcium lability of cytoplasmic microtubules and its modulation by microtubule-associated proteins (1981) Proc Natl Acad Sci USA, 78, pp. 1037-1041 
504 |a Sanes, J.R., Lichtman, J.W., Development of the vertebrate neuromuscular junction (1999) Ann Rev, 22, pp. 389-442 
504 |a Santafé, M.M., Garcia, N., Lanuza, M.A., Uchitel, O.D., Tomàs, J., Calcium channels coupled to neurotransmitter release at dually innervated neuromuscular junctions in the newborn rat (2001) Neuroscience, 102, pp. 697-708 
504 |a Santafé, M.M., Garcia, N., Lanuza, M.A., Uchitel, O.D., Salon, I., Tomàs, J., Decreased calcium influx into the neonatal rat motor nerve terminals can recruit additional neuromuscular junctions during the synapse elimination period (2002) Neuroscience, 110, pp. 147-154 
504 |a Santafé, M.M., Salon, I., Garcia, N., Lanuza, M.A., Uchitel, O.D., Tomàs, J., Modulation of ACh release by presynaptic muscarinic autoreceptors in the neuromuscular junction from the newborn to the adult rat (2003) Eur J Neurosci, 17, pp. 1-9 
504 |a Slutsky, I., Parnas, H., Parnas, I., Presynaptic effects of muscarine on ACh release at the frog neuromuscular junction (1999) J Physiol Lond, 514, pp. 769-782 
504 |a Song, W.J., Tkatch, T., Surmeier, D.J., Adenosine receptor expression and modulation of Ca2+ channels in rat striatal cholinergic interneurons (2000) J Neurophysiol, 83, pp. 322-332 
504 |a Starke, K., Göthert, M., Kilbinger, H., Modulation of neurotransmitter release by presynaptic autoreceptors (1989) Physiol Rev, 69, pp. 864-989 
504 |a Stefani, A., Spadoni, F., Bernardi, G., Group III metabotropic glutamate receptor agonists modulate high voltage-activated Ca2+ currents in pyramidal neurons of the adul rat (1998) Exp Brain Res, 119, pp. 237-244 
504 |a Sugiura, Y., Ko, C., Novel modulatory effect of L-type calcium channels at newly formed neuromuscular junctions (1997) J Neurosci, 17, pp. 1101-1111 
504 |a Thompson, W.J., Activity and synapse elimination at the neuromuscular junction (1985) Cell Mol Neurobiol, 5, pp. 167-182 
504 |a Uchitel, O.D., Protti, D.A., Sánchez, V., Cherksey, B.D., Sugimori, M., Llinás, R., P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses (1992) Proc Natl Acad Sci USA, 89, pp. 3330-3333 
504 |a Umemiya, M., Berger, A.J., Activation of adenosine A1 and A2 receptors differentially modulates calcium channels and glycinergic synaptic transmission in rat brainstem (1994) Neuron, 13, pp. 1439-1446 
504 |a Vigers, A.J., Pfenninger, K.H., N-type and L-type calcium channels are present in nerve growth cones: Numbers increase on synaptogenesis (1991) Dev Brain Res, 60, pp. 197-203 
504 |a Walsh, M.K., Lichtman, J.W., In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination (2003) Neuron, 37, pp. 67-73 
504 |a Wu, L.G., Westenbroek, R.E., Borst, J.G.G., Catterall, W.A., Sakmann, B., Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single-calyx synapses (1999) J Neurosci, 19, pp. 726-736 
504 |a Zhu, P.H., Vrbovà, G., The role of Ca2+ in the elimination of polyneuronal innervation of rat soleus muscle fibers (1992) Eur J Neurosci, 4, pp. 433-437 
520 3 |a Using intracellular recording, we studied how several muscarinic antagonists affected the evoked endplate potentials in singly and dually innervated endplates of the levator auris longus muscle from 3 to 6-day-old rats. In dually innervated fibers, a second endplate potential (EPP) may appear after the first one when we increase the stimulation intensity. The lowest and highest EPP amplitudes are designated "small-EPP" and "large-EPP," respectively. In singly innervated endplates and large-EPP, we found an inhibition of acetylcholine release by M1-receptor antagonists pirenzepine and MT-7 (more than 30%) and M2-receptor antagonists methoctramine and AF-DX 116 (more than 40%). The small-EPP was also inhibited by both M2-receptor antagonists methoctramine (approximately 70%) and AF-DX 116 (approximately 40%). However, the small-EPP was enhanced by M1-receptor antagonists pirenzepine (approximately 90%) and MT-7 (approximately 50%). The M4-receptor selective antagonists tropicamide and MT-3 can also increase the small-EPP amplitude (75% and 120%, respectively). We observed a graded change from a multichannel involvement (P/Q- N- and L-type voltage-dependent calcium channels) of all muscarinic responses (M1-, M2- and M4-mediated) in the small-EPP to the single channel (P/Q-type) involvement of the M1 and M2 responses in the singly innervated endplates. This indicates the existence of a progressive calcium channels shutoff in parallel with the specialization of the adult type P/Q channel. In conclusion, muscarinic autoreceptors can directly modulate large-EPP generating ending potentiation, and small-EPP generating ending depression through their association with the calcium channels during development. © 2003 IBRO. Published by Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: The authors would like to thank Dr. M. T. Colomina and Dr. M. Rosato-Siri for reading the manuscript and offering valuable suggestions. This work was supported by a grant from FISS (2000-00/0953 and 2001/PI020448). 
593 |a Unitat d'Histologia i Neurobiologia, Facultat Med. i Ciencies de la Salut, Universitat Rovira i Virgili, carrer St. Llorenç num 21, 43201 Reus, Spain 
593 |a Lab. de Fisiol. y Biol. Molecular, Fac. de Ciencias Exactas y Naturales, Pabellón II, 1428 Buenos Aires, Argentina 
690 1 0 |a CHOLINERGIC SYNAPSE 
690 1 0 |a MOTOR ENDPLATE 
690 1 0 |a MOTOR NERVE TERMINAL 
690 1 0 |a POLYNEURONAL INNERVATION 
690 1 0 |a VOLTAGE-DEPENDENT CALCIUM CHANNELS 
690 1 0 |a ACETYLCHOLINE 
690 1 0 |a CALCIUM 
690 1 0 |a CALCIUM CHANNEL 
690 1 0 |a CALCIUM CHANNEL L TYPE 
690 1 0 |a CALCIUM CHANNEL N TYPE 
690 1 0 |a CALCIUM CHANNEL P TYPE 
690 1 0 |a CALCIUM CHANNEL Q TYPE 
690 1 0 |a METHOCTRAMINE 
690 1 0 |a MUSCARINIC M1 RECEPTOR ANTAGONIST 
690 1 0 |a MUSCARINIC M2 RECEPTOR ANTAGONIST 
690 1 0 |a MUSCARINIC M4 RECEPTOR 
690 1 0 |a MUSCARINIC RECEPTOR 
690 1 0 |a MUSCARINIC RECEPTOR BLOCKING AGENT 
690 1 0 |a OTENZEPAD 
690 1 0 |a PIRENZEPINE 
690 1 0 |a TROPICAMIDE 
690 1 0 |a ACETYLCHOLINE RELEASE 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DRUG EFFECT 
690 1 0 |a ENDPLATE POTENTIAL 
690 1 0 |a INNERVATION 
690 1 0 |a INTRACELLULAR RECORDING 
690 1 0 |a NEUROMUSCULAR SYNAPSE 
690 1 0 |a NEUROTRANSMITTER RELEASE 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a RAT 
653 0 0 |a af dx 116, Tocris 
700 1 |a Salon, I. 
700 1 |a Garcia, N. 
700 1 |a Lanuza, M.A. 
700 1 |a Uchitel, O.D. 
700 1 |a Tomàs, J. 
773 0 |d Elsevier Ltd, 2004  |g v. 123  |h pp. 61-73  |k n. 1  |p Neuroscience  |x 03064522  |w (AR-BaUEN)CENRE-759  |t Neuroscience 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0344255659&doi=10.1016%2fj.neuroscience.2003.09.012&partnerID=40&md5=3b6c384c0b6d9f9dfe391e93cc24da23  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.neuroscience.2003.09.012  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03064522_v123_n1_p61_Santafe  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03064522_v123_n1_p61_Santafe  |y Registro en la Biblioteca Digital 
961 |a paper_03064522_v123_n1_p61_Santafe  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 65661