Intensive entropic non-triviality measure

We discuss a way of characterizing probability distributions, complementing that provided by the celebrated notion of information measure, with reference to a measure of complexity that we call a "nontriviality measure". Our starting point is the "LMC" measure of complexity advan...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lamberti, Pedro Walter
Otros Autores: Martin, M.T, Plastino, Angel Luis, Rosso, O.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06445caa a22008897a 4500
001 PAPER-4657
003 AR-BaUEN
005 20250821091257.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0942277602 
030 |a PHYAD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lamberti, Pedro Walter 
245 1 0 |a Intensive entropic non-triviality measure 
260 |c 2004 
270 1 0 |m Rosso, O.A.; Instituto de Cálculo, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón II, Ciudad de Buenos Aires 1428, Argentina; email: rosso@ic.fcen.uba.ar 
504 |a Katz, A., (1967) Principles of Statistical Mechanics, The Information Theory Approach, , San Francisco: Freeman and Co 
504 |a Shannon, C.E., (1948) Bell System Technol. J., 27, p. 379 
504 |a Kolmogorov, A.N., (1958) Dokl. Akad. Nauk SSSR, 119, p. 861 
504 |a Sinai, Ja.G., (1959) Dokl. Akad. Nauk SSSR, 124, p. 768 
504 |a Scalapino, D.J., (1993) Physics and Probability. Essays in Honor of Edwin T. Jaynes, , W.T. Jr. Grandy, & P.W. Milonni. New York: Cambridge University Press. and references therein 
504 |a Silver, R.N., (1993) Physics and Probability. Essays in Honor of Edwin T. Jaynes, , W.T. Jr. Grandy, & P.W. Milonni. New York: Cambridge University Press 
504 |a Cover, T.M., Thomas, J.A., (1991) Elements of Information Theory, , New York: Wiley 
504 |a Anteneodo, C., Plastino, A.R., (1997) Phys. Lett. A, 223, p. 348 
504 |a Calbet, X., López-Ruiz, R., (2001) Phys. Rev. E, 63, p. 066116 
504 |a López-Ruiz, R., Mancini, H.L., Calbet, X., (1995) Phys. Lett. A, 209, p. 321 
504 |a Shiner, J.S., Davison, M., Landsberg, P.T., (1999) Phys. Rev. E, 59, p. 1459 
504 |a Shiner, J.S., Davison, M., Landsberg, P.T., (2000) Phys. Rev. E, 62, p. 3000 
504 |a Beck, C., Schlögl, F., (1993) Thermodynamic of Chaotic Systems, , New York: Cambridge University Press 
504 |a Feldman, D.P., Crutchfield, J.P., (1998) Phys. Lett. A, 238, p. 244 
504 |a Huberman, B.A., Hogg, T., (1986) Physics D, 22, p. 376 
504 |a Grassberger, P., (1986) Int. J. Theoret. Phys., 25, p. 907 
504 |a Crutchfield, J.P., (1989) Phys. Rev. Lett., 63, p. 105 
504 |a Kantz, H., Kurths, J., Meyer-Kress, G., (1998) Nonlinear Analysis of Physiological Data, , Berlin: Springer 
504 |a Crutchfield, J.P., Feldman, D.P., Shalizi, C.R., (2000) Phys. Rev. E, 62, p. 2996 
504 |a Binder, P.M., Perry, N., (2000) Phys. Rev. E, 62, p. 2998 
504 |a Rosso, O.A., Martin, M.T., Plastino, A., (2003), unpublished; Kullback, S., Leibler, R.A., (1951) Ann. Math. Stat., 22, p. 79 
504 |a Crutchfield, J.P., Young, K., (1989) Phys. Rev. Lett., 63, p. 105 
504 |a Lin, J., (1991) IEEE Trans. Inform. Theory, 37, p. 1 
504 |a Topsoe, F., preprint, University of Copenhagen, 2002; Grosse, I., Bernaola-Galvan, P., Crapena, P., Román-Roldán, R., Oliver, J., Stanley, H.E., (2002) Phys. Rev. E, 65, p. 41905 
504 |a Lamberti, P.W., Majtley, A.P., (2003) Physica A, 239, p. 81 
504 |a Ott, E., Sauer, T., Yorke, J.A., (1994) Coping with Chaos, , New York: Wiley 
506 |2 openaire  |e Política editorial 
520 3 |a We discuss a way of characterizing probability distributions, complementing that provided by the celebrated notion of information measure, with reference to a measure of complexity that we call a "nontriviality measure". Our starting point is the "LMC" measure of complexity advanced by López-Ruiz et al. (Phys. Lett. A 209 (1995) 321) and its analysis by Anteneodo and Plastino (Phys. Lett. A 223 (1997) 348). An improvement of some of their troublesome characteristics is thereby achieved. Basically, we replace the Euclidean distance to equilibrium by the Jensen-Shannon divergence. The resulting measure turns out to be (i) an intensive quantity and (ii) allows one to distinguish between different degrees of periodicity. We apply the "cured" measure to the logistic map so as to clearly exhibit its advantages. © 2004 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: ARG-4-G0A-6A, ARG01-005 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 0029/98 
536 |a Detalles de la financiación: This work was partially supported by CONICET (PIP 0029/98), Argentina and the International Office of BMBF (ARG-4-G0A-6A and ARG01-005), Germany. 
593 |a Fac. de Matemat./Astron./Fís., Univ. Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina 
593 |a Instituto de Física (IFLP), Universidad Nacional de La Plata, Argentina's Natl. Res. Cncl., C.C. 727, La Plata 1900, Argentina 
593 |a Instituto de Cálculo, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón II, Ciudad de Buenos Aires 1428, Argentina 
690 1 0 |a DISEQUILIBRIUM 
690 1 0 |a DISTANCES IN PROBABILITY SPACE 
690 1 0 |a DYNAMICAL SYSTEMS 
690 1 0 |a FRACTALS 
690 1 0 |a LYAPUNOV METHODS 
690 1 0 |a MATHEMATICAL MODELS 
690 1 0 |a METRIC SYSTEM 
690 1 0 |a PROBABILITY DISTRIBUTIONS 
690 1 0 |a STATISTICAL METHODS 
690 1 0 |a UNCERTAIN SYSTEMS 
690 1 0 |a VECTORS 
690 1 0 |a DISEQUILIBRIUM 
690 1 0 |a DISTANCES IN PROBABILITY SPACES 
690 1 0 |a DYNAMICAL SYSTEMS 
690 1 0 |a ENTROPY 
700 1 |a Martin, M.T. 
700 1 |a Plastino, Angel Luis 
700 1 |a Rosso, O.A. 
773 0 |d 2004  |g v. 334  |h pp. 119-131  |k n. 1-2  |p Phys A Stat Mech Appl  |x 03784371  |w (AR-BaUEN)CENRE-280  |t Physica A: Statistical Mechanics and its Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0942277602&doi=10.1016%2fj.physa.2003.11.005&partnerID=40&md5=6d0569383076e3ff9caaf0ec1c2f2bca  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.physa.2003.11.005  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03784371_v334_n1-2_p119_Lamberti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v334_n1-2_p119_Lamberti  |y Registro en la Biblioteca Digital 
961 |a paper_03784371_v334_n1-2_p119_Lamberti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 65610