Quantile-Quantile Plot for Deviance Residuals in the Generalized Linear Model
The normal quantile-quantile (Q-Q) plot of residuals is a popular diagnostic tool for ordinary linear regression with normal errors. However, for some generalized linear regression models, the distribution of deviance residuals may be very far from normality, and therefore the corresponding normal Q...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2004
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 04135caa a22004577a 4500 | ||
|---|---|---|---|
| 001 | PAPER-4652 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203413.0 | ||
| 008 | 190411s2004 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-1842486862 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a García Ben, M. | |
| 245 | 1 | 0 | |a Quantile-Quantile Plot for Deviance Residuals in the Generalized Linear Model |
| 260 | |c 2004 | ||
| 270 | 1 | 0 | |m García Ben, M.; Departamento de Matematicas, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon 1, 1428 Buenos Aires, Argentina; email: mgben@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A., (1983) Graphical Methods for Data Analysis, , Belmont, CA: Wadsworth | ||
| 504 | |a Chung, K.L., (1974) A Course in Probability Theory, , New York: Academic Press | ||
| 504 | |a Cox, D.R., Snell, E.J., A General Definition of Residuals (1968) Journal of the Royal Statistical Society, Ser. B, 30, pp. 248-275 | ||
| 504 | |a Davison, A.C., Gigli, A., Deviance Residuals and Normal Scores Plots (1989) Biometrika, 76, pp. 211-221 | ||
| 504 | |a Dunn, P.K., Smyth, G.K., Randomized Quantile Residuals (1996) Journal of Computational and Graphical Statistics, 5, pp. 236-244 | ||
| 504 | |a Fahrmeir, L., Kaufmann, H., Consistency and Asymptotic Normality of the Maximum Likelihood Estimators in Generalized Linear Models (1985) The Annals of Statistics, 14, pp. 342-368 | ||
| 504 | |a Hallon, L., Lanternier, G., Diez, M., Barbagelata, A., Gabe, E., García Ben, M., Casabe, J.H., Neurological Events After Cardiovascular Surgery: Incidence, Prognosis and Risk Factors (1999) Revista Argentina de Cardiología, 67, pp. 617-623 | ||
| 504 | |a Hoaglin, D.C., Using Quantiles to Study Shape (1985) Exploratory Data Tables, Trends and Shapes, pp. 432-439. , eds. D. C. Hoaglin, F. Mosteller, and J. W. Tukey, New York: Wiley | ||
| 504 | |a Landwehr, J.M., Pregibon, D., Shoemaker, A.C., Graphical Methods for Assessing Logistic Regression Models (1984) Journal of the American Statistical Association, 79, pp. 61-71 | ||
| 504 | |a McCullagh, P., Nelder, J.A., (1989) Generalized Linear Models, , London: Chapman and Hall | ||
| 520 | 3 | |a The normal quantile-quantile (Q-Q) plot of residuals is a popular diagnostic tool for ordinary linear regression with normal errors. However, for some generalized linear regression models, the distribution of deviance residuals may be very far from normality, and therefore the corresponding normal Q-Q plots may be misleading to check model adequacy. We introduce an estimate of the distribution of the deviance residuals of generalized linear models. We propose a new Q-Q plot where the observed deviance residuals are plotted against the quantiles of the estimated distribution. The method is illustrated by the analysis of real and simulated data. |l eng | |
| 593 | |a Departamento de Matematicas, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon 1, 1428 Buenos Aires, Argentina | ||
| 593 | |a Departamento de Matematicas, Fac. de Ciencias Exactas y Naturales, Consejo Nac. Invest. Cie./Tec. A., Argentina | ||
| 690 | 1 | 0 | |a DEVIANCE RESIDUALS DISTRIBUTION |
| 690 | 1 | 0 | |a LOGISTIC REGRESSION |
| 690 | 1 | 0 | |a PROBABILITY PLOT |
| 700 | 1 | |a Yohai, V.J. | |
| 773 | 0 | |d 2004 |g v. 13 |h pp. 36-47 |k n. 1 |p J. Comput. Graph. Stat. |x 10618600 |t Journal of Computational and Graphical Statistics | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-1842486862&doi=10.1198%2f1061860042949&partnerID=40&md5=c135d72508dbc2d06d082693b0b54c7f |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1198/1061860042949 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_10618600_v13_n1_p36_GarciaBen |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10618600_v13_n1_p36_GarciaBen |y Registro en la Biblioteca Digital |
| 961 | |a paper_10618600_v13_n1_p36_GarciaBen |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 65605 | ||