Structure analysis of two Toxoplasma gondii and Neospora caninum satellite DNA families and evolution of their common monomeric sequence

A family of repetitive DNA elements of approximately 350 bp - Sat350 - that are members of Toxoplasma gondii satellite DNA was further analyzed. Sequence analysis identified at least three distinct repeat types within this family, called types A, B, and C. B repeats were divided into the subtypes B1...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Clemente, M.
Otros Autores: De Miguel, N., Lia, V.V, Matrajt, M., Angel, S.O
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16225caa a22016457a 4500
001 PAPER-4584
003 AR-BaUEN
005 20230518203408.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-2342491554 
024 7 |2 Molecular Sequence Numbers  |a GENBANK: AF022237, AF534391, AF534392, AF534393, AY330203, AY330204, AY330205, AY330206, AY330207, AY330208, AY330209, AY330210, AY333784, AY333785, AY333786, M57916, M57917, M57918, M57919, X74557; 
024 7 |2 cas  |a DNA, Satellite 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JMEVA 
100 1 |a Clemente, M. 
245 1 0 |a Structure analysis of two Toxoplasma gondii and Neospora caninum satellite DNA families and evolution of their common monomeric sequence 
260 |c 2004 
270 1 0 |m Angel, S.O.; Lab. de Parasitologia Molecular, UB2, CONICET-UNSAM, Camino Circunvalacion Laguna km. 6, Prov. Buenos Aires, Argentina; email: sangel83@hotmail.com 
506 |2 openaire  |e Política editorial 
504 |a Ajzenberg, D., Banuls, A.L., Tybayrenc, M., Darde, M.L., Microsatellite analysis of Toxoplasma gondii shows considerable polymorphism structured into two main clonal groups (2002) Int J Parasitol, 32, pp. 27-38 
504 |a Andrades-Miranda, J., Zanchin, N.I., Oliveira, L.F., Langguth, A.R., Mattevi, M.S., (T2AG3)n telomeric sequence hybridization indicating centric fusion rearrangements in the karyotype of the rodent Oryzomys subflavus (2002) Genetica, 114, pp. 11-16 
504 |a Blanco, J.C., Angel, S.O., Serpente, P., Pszenny, V., Maero, E., Garberi, J.C., Cloning of repetitive DNA sequences from Toxoplasma gondii and its usefulness for parasite detection (1992) Am J Trop Med Hyg, 46, pp. 350-357 
504 |a Cabot, E.L., Doshi, P., Wu, M.-L., Wu, C.-I., Population genetics of tandem repeats in centromeric heterochromatin: Unequal crossing over and chromosomal divergence at the responder locus of Drosophila melanogaster (1993) Genetics, 135, pp. 477-487 
504 |a Cafasso, D., Cozzolino, S., De Luca, P., Chinali, G., An unusual satellite DNA from Zamia paucijuga (Cycadales) characterised by two different organisations of the repetitive unit in the plant genome (2003) Gene, 311, pp. 71-79 
504 |a Castagnone Sereno, P., Leroy, H., Semblat, J.-P., Leroy, F., Abad, P., Zijlstra, C., Unusual and strongly structured sequence variation in a complex satellite DNA family from the nematode Meloidogyne chitwoodi (1998) J Mol Evol, 46, pp. 225-233 
504 |a Charlesworth, B., Sniegowski, P., Stephan, W., The evolutionary dynamics of repetitive in eukaryotes (1994) Nature, 371, pp. 215-220 
504 |a Cristina, N., Liaud, M.F., Santoro, F., Oury, B., Ambroise-Thomas, P.A., A family of repeated DNAs sequences in Toxoplasma gondii: Cloning, sequence analysis and use in strain characterization (1991) Exp Parasitol, 73, pp. 73-81 
504 |a Cristina, N., Dard, M.L., Boudin, C., Tavernier, F., Pestre-Alexandre, M., Ambroise-Thomas, P.A., A DNA finger-printing method for individual characterization of Toxoplasma gondii strains: Combination with isoenzymatic characters for determination of linkage groups (1995) Parasitol Res, 81, pp. 32-37 
504 |a Cronn, R.C., Zhao, X., Paterson, A.H., Wendel, J.F., Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons (1996) J Mol Evol, 42, pp. 685-705 
504 |a Csink, A.K., Henikoff, S., Something from nothing: The evolution and utility of satellite repeats (1998) Trends Genet, 14, pp. 200-204 
504 |a Dard, M.L., Biodiversity in Toxoplasma gondii (1996) Curr Top Microbiol Immunol, 219, pp. 27-41 
504 |a Elder, J.F., Turner, B.J., Concerted evolution of repetitive DNA sequences in eukaryotes (1995) Q Rev Biol, 70, pp. 297-320 
504 |a Felsenstein, J., Confidence limits on phylogenies: An approach using the boostrap (1985) Evolution, 39, pp. 783-791 
504 |a Echeverria, P.C., Rojas, P.A., Martin, V., Guarnera, E.A., Pszenny, V., Angel, S.O., Characterization of an interspersed Toxoplasma gondii DNA repeat with potential uses for PCR diagnosis and PCR-RFLP analysis (2000) FEMS Microbiol Lett, 184, pp. 23-27 
504 |a Goldeberg, I.G., Sawhney, H., Pluta, A.F., Wartburton, P.E., Earnshaw, W.C., Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: Implication for CENP-B function at centromeres (1996) Mol Cell Biol, 16, pp. 5156-5168 
504 |a Grigg, M.E., Ganatra, J., Boothroyd, J.C., Margolis, T.P., Unusual abundance of atypical strains associated with human ocular toxoplasmosis (2001) J Infect Dis, 184, pp. 633-639 
504 |a Grigg, M.E., Bonnefoy, S., Hehl, A.B., Suzuki, Y., Boothroyd, J.C., Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries (2001) Science, 294, pp. 161-165 
504 |a Henning, W., Henning, I., Stein, H., Repeated sequences in the DNA of Drosophila and their localization in giant chromosomes (1970) Chromosoma, 32, pp. 31-63 
504 |a Hodgall, E., Vuust, J., Lind, P., Petersen, E., Characterization of Toxoplasma gondii isolates using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) of the noncoding Toxoplasma gondii (TGR)-gene sequences (2000) Int J Parasitol, 30, pp. 853-858 
504 |a Homan, W.L., Vercammen, M., De Braekeleer, J., Verschueren, H., Identification of a 200-300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR (2000) Int J Parasitol, 30, pp. 69-75 
504 |a Howe, D.K., Sibley, L.D., Toxoplasma gondii comprises three clonal lineages: Correlation of parasite genotype with human disease (1995) J Infect Dis, 172, pp. 1561-1566 
504 |a Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G., Gibson, T.J., Multiple sequence alignment with Clustal X (1998) Trends Biochem Sci, 23, pp. 403-405 
504 |a Jones, J., Flavell, R., The structure, amount and chromosomal localization of defined repeated DNA sequences in species of the genus Secale (1982) Chromosoma, 86, pp. 613-641 
504 |a Kimura, M., A simple method for estimating evolutionary rates of base substitution through comparative studied of nucleotide sequences (1980) J Mol Evol, 16, pp. 111-120 
504 |a Koch, J., Neocentromeres and alpha satellite: A proposed structural code for functional human centromere DNA (2000) Hum Mol Genet, 9, pp. 149-154 
504 |a Liao, D., Concerted evolution: Molecular mechanism and biological implications (1999) Am J Hum Genet, 64, pp. 24-30 
504 |a Literak, I., Rychlik, I., Svobodova, V., Pospisil, Z., Restriction fragment length polymorphism and virulence of Czech Toxoplasma gondii strains (1998) Int J Parasitol, 28, pp. 1367-1374 
504 |a Matrajt, M., Angel, S.O., Pszenny, V., Guarnera, E., Roos, D.S., Garberi, J.C., Arrays of repetitive DNA elements in the largest chromosomes of Toxoplasma gondii (1999) Genome, 42, pp. 265-269 
504 |a Mestrovick, N., Plohl, M., Mravinac, B., Ugarkovic, D., Evolution of satellite DNAs from the genus Palorus - Experimental evidence for the "Library" hypotesis (1998) Mol Biol Evol, 15, pp. 1062-1068 
504 |a Muro, Y., Masumoto, H., Yoda, K., Nozaki, N., Ohashi, M., Okazaki, T., Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box (1992) J Cell Biol, 116, pp. 585-596 
504 |a Nagylaki, T., Gene conversion, linkage, and the evolution of repeated genes dispersed among multiple chromosomes (1990) Genetics, 106, pp. 529-548 
504 |a Nijman, I.J., Lenstra, J.A., Mutation and recombination in cattle satellite DNA: A feedback model for the evolution of satellite DNA repeats (2001) J Mol Evol, 52, pp. 361-371 
504 |a Ossorio, P.N., Sibley, L.D., Boothroyd, J.C., Mitochondrial-like DNA sequences flanked by direct and inverted repeats in the nuclear genome of Toxoplasma gondii (1991) J Mol Biol, 222, pp. 525-536 
504 |a Plohl, M., Cornurdella, L., Characterization of a complex satellite DNA in the mollusc Donax trunculus: Analysis of sequence variations and divergence (1996) Gene, 169, pp. 157-164 
504 |a Reinhart, B.J., Bartel, D.P., Small RNAs correspond to centromere heterochromatic repeats (2002) Science, 297, p. 1831 
504 |a Rocco, L., Costagliola, D., Stingo, V., (TTAGGG)n telomeric sequence in Selachian chromosomes (2001) Heredity, 87, pp. 583-588 
504 |a Rose, M.R., Doolittle, W., Molecular biological mechanisms of speciation (1983) Science, 220, pp. 157-162 
504 |a Ruiz-Herrera, A., Garcia, F., Azzalin, C., Giulotto, E., Egozcue, J., Ponsa, M., Garcia, M., Distribution of intrachromosomal telomeric sequences (ITS) on Macaca fascicularis (Primates) chromosomes and their implications for chromosome evolution (2002) Hum Genet, 110, pp. 578-586 
504 |a Sambrook, J., Fritsh, E.F., Maniatis, T., (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 
504 |a Schimenti, J.C., Mice and role of unequal recombination in gene-family evolution (1999) Am J Hum Genet, 64, pp. 24-30 
504 |a Schlotterer, C., Tautz, D., Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution (1994) Curr Biol, 4, pp. 777-783 
504 |a Shirley, M.W., The genome of Eimeria tenella: Further studies on its molecular organisation (1994) Parasitol Res, 80, pp. 366-373 
504 |a Sibley, L.D., Boothroyd, J.C., Construction of a molecular karyotype for Toxoplasma gondii (1992) Mol Biochem Parasitol, 51, pp. 291-300 
504 |a Su, C.L., Evans, D., Cole, R.H., Kissinger, J.C., Ajioka, J.W., Sibley, L.D., Enhanced oral transmission acquired through recent recombination led to widespread expansion of Toxoplasma (2003) Science, 299, pp. 414-416 
504 |a Terry, R.S., Smith, J.E., Duncanson, P., Hide, G., MGE-PCR: A novel approach to the analysis of Toxoplasma gondii strain differentiation using mobile genetic elements (2001) Int J Parasitol, 31, pp. 155-161 
504 |a Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I.S., Martienssen, R.A., Regulation of heterochromatic silencing and histone H3 lysine-9 meethylation by RNAi (2002) Science, 297, pp. 1833-1837 
504 |a Warburton, P.E., Waye, J.S., Willard, H.F., Nonrandom localization of recombination events in human alpha satellite repeat unit variants: Implications for higher-order structural characteristics within centromeric heterochromatin (1993) Mol Cell Biol, 13, pp. 6520-6529 
504 |a Waye, J.S., Willard, H.F., Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: Evidence fro evolution by unequal crossing-over and ancestral pentamer repeat shared with the human X chromosome (1986) Mol Cell Biol, 6, pp. 3156-3165 
504 |a Waye, J.S., England, S.B., Willard, H.F., Genomic organization of alpha satellite DNA on human chromosome 7: Evidence for two distinct alphoid domains on a single chromosome (1987) Mol Cell Biol, 7, pp. 349-356 
504 |a Wichman, H.A., Payne, C.T., Ryder, O.A., Hamilton, M.J., Maltibe, M., Baker, R.J., Genomic distribution of heterochromatin sequences in equids: Implications to rapid chromosomal evolution (1991) J Hered, 82, pp. 369-377 
520 3 |a A family of repetitive DNA elements of approximately 350 bp - Sat350 - that are members of Toxoplasma gondii satellite DNA was further analyzed. Sequence analysis identified at least three distinct repeat types within this family, called types A, B, and C. B repeats were divided into the subtypes B1 and B2. A search for internal repetitions within this family permitted the identification of conserved regions and the design of PCR primers that amplify almost all these repetitive elements. These primers amplified the expected 350-bp repeats and a novel 680-bp repetitive element (Sat680) related to this family. Two additional tandemly repeated high-order structures corresponding to this satellite DNA family were found by searching the Toxoplasma genome database with these sequences. These studies were confirmed by sequence analysis and identified: (1) an arrangement of AB1CB2 350-bp repeats and (2) an arrangement of two 350-bp-like repeats, resulting in a 680-bp monomer. Sequence comparison and phylogenetic analysis indicated that both high-order structures may have originated from the same ancestral 350-bp repeat. PCR amplification, sequence analysis and Southern blot showed that similar high-order structures were also found in the Toxoplasma-sister taxon Neospora caninum. The Toxoplasma genome database (http://ToxoDB.org) permitted the assembly of a contig harboring Sat350 elements at one end and a long nonrepetitive DNA sequence flanking this satellite DNA. The region bordering the Sat350 repeats contained two differentially expressed sequence-related regions and interstitial telomeric sequences.  |l eng 
593 |a INGEBI, Ciudad de Buenos Aires, Argentina 
593 |a Lab. de Parasitologia Molecular, UB2, CONICET-UNSAM, Camino Circunvalacion Laguna km. 6, Prov. Buenos Aires, Argentina 
593 |a Depto. de Ecologia, Genet. y Evol., Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
593 |a Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States 
593 |a Departamento de Parasitologiá, ANLIS Dr. Carlos G. Malbran, Ciudad de Buenos Aires, Argentina 
690 1 0 |a EST 
690 1 0 |a HETEROCHROMATIN 
690 1 0 |a NEOSPORA CANINUM 
690 1 0 |a SATELLITE DNA 
690 1 0 |a TANDEM REPEAT 
690 1 0 |a TOXOPLASMA GONDII 
690 1 0 |a MONOMER 
690 1 0 |a PRIMER DNA 
690 1 0 |a REPETITIVE DNA 
690 1 0 |a SATELLITE DNA 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CORRELATION ANALYSIS 
690 1 0 |a DATA BASE 
690 1 0 |a DNA FLANKING REGION 
690 1 0 |a DNA SEQUENCE 
690 1 0 |a GENE AMPLIFICATION 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENE IDENTIFICATION 
690 1 0 |a GENE STRUCTURE 
690 1 0 |a GENETIC ANALYSIS 
690 1 0 |a GENETIC CONSERVATION 
690 1 0 |a GENOME 
690 1 0 |a MOLECULAR EVOLUTION 
690 1 0 |a MOLECULAR PHYLOGENY 
690 1 0 |a MULTIGENE FAMILY 
690 1 0 |a NEOSPORA CANINUM 
690 1 0 |a NONHUMAN 
690 1 0 |a NUCLEOTIDE SEQUENCE 
690 1 0 |a POLYMERASE CHAIN REACTION 
690 1 0 |a PROTEIN ASSEMBLY 
690 1 0 |a SEQUENCE ANALYSIS 
690 1 0 |a SOUTHERN BLOTTING 
690 1 0 |a STRUCTURE ANALYSIS 
690 1 0 |a TELOMERE 
690 1 0 |a TOXOPLASMA GONDII 
690 1 0 |a ANIMALS 
690 1 0 |a BACTERIOPHAGES 
690 1 0 |a CLONING, MOLECULAR 
690 1 0 |a CONTIG MAPPING 
690 1 0 |a DNA, SATELLITE 
690 1 0 |a EVOLUTION, MOLECULAR 
690 1 0 |a EXPRESSED SEQUENCE TAGS 
690 1 0 |a NEOSPORA 
690 1 0 |a PHYLOGENY 
690 1 0 |a SEQUENCE ALIGNMENT 
690 1 0 |a SEQUENCE ANALYSIS, DNA 
690 1 0 |a TOXOPLASMA 
690 1 0 |a NEOSPORA CANINUM 
690 1 0 |a PROTOZOA 
690 1 0 |a TOXOPLASMA 
690 1 0 |a TOXOPLASMA GONDII 
700 1 |a De Miguel, N. 
700 1 |a Lia, V.V. 
700 1 |a Matrajt, M. 
700 1 |a Angel, S.O. 
773 0 |d 2004  |g v. 58  |h pp. 557-567  |k n. 5  |p J. Mol. Evol.  |x 00222844  |t Journal of Molecular Evolution 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-2342491554&doi=10.1007%2fs00239-003-2578-3&partnerID=40&md5=82bbd5ec8697928dea22ab6b54b5e269  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00239-003-2578-3  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00222844_v58_n5_p557_Clemente  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222844_v58_n5_p557_Clemente  |y Registro en la Biblioteca Digital 
961 |a paper_00222844_v58_n5_p557_Clemente  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 65537