Rose Bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimers

Rose Bengal adsorbed on microgranular cellulose was studied in the solid phase by total and diffuse reflectance and steady-state emission spectroscopy. A simple monomer-dimer equilibrium fitted reflectance data up to dye loadings of 4 × 10-7 mol (g cellulose)-1 and allowed calculation of monomer and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rodríguez, H.B
Otros Autores: Lagorio, M.G, San Román, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09986caa a22010217a 4500
001 PAPER-4501
003 AR-BaUEN
005 20230518203403.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-4344601166 
024 7 |2 cas  |a alcohol, 64-17-5; cellulose, 61991-22-8, 68073-05-2, 9004-34-6; rose bengal, 11121-48-5, 11139-83-6, 632-68-8 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PPSHC 
100 1 |a Rodríguez, H.B. 
245 1 0 |a Rose Bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimers 
260 |c 2004 
270 1 0 |m San Román, E.; INQUIMAE/DQIAyQF, FCEyN, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina; email: esr@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Wilkinson, F., Philip Helman, W., Ross, A.B., Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution (1993) J. Phys. Chem. Ref. Data, 22, pp. 113-262 
504 |a Dahl, T.A., Valdes-Aguilera, O., Midden, W.R., Neckers, D.C., Partition of Rose Bengal Anion from aqueous medium into a lipophilic environment in the cell envelope of Salmonella typhimurium: Implications for cell-type targeting in photodynamic therapy (1989) J. Photochem. Photobiol. B: Biol., 4, pp. 171-184. , and references therein 
504 |a Croce, A.C., Wyroba, E., Bottiroli, G., Distribution and retention of rose bengal and disulfonated aluminum phthalocyanine: A comparative study in unicellular eukaryote (1992) J. Photochem. Photobiol. B: Biol., 16, pp. 319-330. , and references therein 
504 |a Schaap, A.P., Thayer, A.L., Blossey, E.C., Neckers, D.C., Polymer based sensitizers for photooxidations (1975) J. Am. Chem. Soc., 97, pp. 3741-3745 
504 |a Schaap, A.P., Thayer, A.L., Zaklika, K.A., Valenti, P.C., Photooxygenation in aqueous solution with a hydrophilic polymer-immobilized photosensitizer (1979) J. Am. Chem. Soc., 101, pp. 4016-4017 
504 |a Iriel, A., Lagorio, M.G., Dicelio, L.E., San Román, E., Photophysics of Supported Dyes: Phthalocyanines on Silanized Silica (2002) Phys. Chem. Chem. Phys., 4, pp. 224-231 
504 |a Kasha, M., Rawls, H.R., Ashraf El-Bayoumi, M., The Exciton Model in Molecular Spectroscopy (1965) Pure Appl. Chem., 2, pp. 371-391 
504 |a Speirs, N.M., Ebenezer, W.J., Jones, A.C., Observation of a Fluorescent Dimer of a Sulfonated Phthalocyanine (2002) Photochem. Photobiol., 76, pp. 247-251 
504 |a Fitzgerald, S., Farren, C., Stanley, C.F., Beeby, A., Bryce, M.R., Fluorescent phthalocyanine dimers-a steady state and flash photolysis study (2002) Photochem. Photobiol. Sci., 1, pp. 581-587 
504 |a Bernik, D., Tymczyszyn, E., Daraio, M.E., Negri, R.M., Fluorescent Dimers of Merocyanine 540 (MC540) in the gel phase of phosphatidyl choline liposomes (1999) Photochem. Photobiol., 70, pp. 40-48 
504 |a Daraio, M.E., San Román, E., Aggregation and Photophysics of Rose Bengal in alumina-coated silica colloidal suspension (2001) Helv. Chim. Acta, 84, pp. 2601-2614 
504 |a Du, H., Fuh, R.A., Li, J., Corkan, A., Lindsey, J.S., PhotochemCAD: A computer-aided design and research tool in photochemistry (1998) Photochem. Photobiol., 68, pp. 141-142 
504 |a Iriel, A., Lagorio, M.G., Dicelio, L.E., San Román, E., Adsorbed Rhodamine 101: A fluorescence standard for the solid phase to be published; Wendlandt, W.W., Hecht, H.G., (1966) Reflectance Spectroscopy, , Wiley, New York 
504 |a Vieira Ferreira, L.F., Freixo, M.R., García, A.R., Wilkinson, F., Photochemistry on Surfaces: Fluorescence Emission Quantum Yield Evaluation of Dyes adsorbed on Microcrystalline Cellulose (1992) J. Chem. Soc. Faraday Trans., 88, pp. 15-22 
504 |a Kortüm, G., (1969) Reflectance Spectroscopy, , Springer-Verlag, New York 
504 |a San Román, E., González, M.C., Analysis of spectrally resolved kinetic data and time resolved spectra by bilinear regression (1989) J. Phys. Chem., 93, pp. 3532-3536 
504 |a Hug, S.J., Sulzberger, B., In situ FTIR-spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase (1994) Langmuir, 10, pp. 3587-3597 
504 |a Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Román, E., Modeling of Fluorescence Quantum Yields of Supported Dyes. Aluminum carboxyphthalocyanine on cellulose (1998) J. Chem. Soc. Faraday Trans., 94, pp. 419-425 
504 |a Mirenda, M., Lagorio, M.G., San Román, E., Photophysics on Surfaces. Determination of Absolute Fluorescence Quantum Yields from Reflectance Spectra (2004) Langmuir, 20, pp. 3690-3697 
504 |a Xu, D., Neckers, D.C., Aggregation of rose bengal molecules in solution (1987) J. Photochem., 40, pp. 361-370 
504 |a Fernández, D.A., Awruch, J., Dicelio, L.E., Photophysical and aggregation studies of t-butyl substituted Zn phthalocyanines (1996) Photochem. Photobiol., 63, pp. 784-792 
504 |a Daraio, M.E., Aramendía, P.F., San Román, E., Braslavsky, S.E., Carboxilated Zinc Phthalocyanines II. Dimerization and Singlet Molecular Oxygen Sensitization in Hexadecyltrimethylammonium Bromide Micelles (1991) Photochem. Photobiol., 54, pp. 367-373 
504 |a Kasha, M., Energy Transfer Mechanism and The Molecular Exciton Model for Molecular Aggregates (1963) Radiat. Res., 20, pp. 55-71 
504 |a Itoh, K., Chiyokawa, Y., Nakao, M., Honda, K., Fluorescence Quenching Processes of Rhodamine B in Oxide Semiconductors and Light-Harvesting Action of its Dimers (1984) J. Am. Chem. Soc., 106, pp. 1620-1627 
504 |a Kemnitz, K., Tamai, N., Yamazaki, I., Nakashima, N., Yoshihara, K., Fluorescence Decays and Spectral Properties of Rhodamines B in Submono-mono, and Multilayers Systems (1986) J. Phys. Chem., 90, pp. 5094-5101 
504 |a Lagorio, M.G., San Román, E., Zeug, A., Zimmermann, J., Röder, B., Photophysics on Surfaces: Absorption and Luminescence Properties of Pheophorbide-a on cellulose (2001) Phys. Chem. Chem. Phys., 3, pp. 1524-1529 
504 |a Seybold, P.G., Gouterman, M., Callis, J., Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes (1969) Photochem. Photobiol., 9, pp. 229-242 
504 |a Vieira Ferreira, L.F., García, A.R., Freixo, M.R., Costa, S.M.B., Photochemistry on surfaces: Solvent-Matrix effect on the Swelling of Cellulose. An Emission and Absorption Study of Adsorbed Auramine O (1993) J. Chem. Soc. Faraday Trans., 89, pp. 1937-1944 
520 3 |a Rose Bengal adsorbed on microgranular cellulose was studied in the solid phase by total and diffuse reflectance and steady-state emission spectroscopy. A simple monomer-dimer equilibrium fitted reflectance data up to dye loadings of 4 × 10-7 mol (g cellulose)-1 and allowed calculation of monomer and dimer spectra. Further increase of dye loading resulted in the formation of higher aggregates. Observed emission and excitation spectra and quantum yields were corrected for reabsorption and reemission of luminescence, using a previously developed model, within the assumption that only monomers are luminescent [M. G. Lagorio, L. E. Dicelio, M. I. Litter and E. San Román, J. Chem. Soc, Faraday Trans., 1998, 94, 419]. An apparent increase of fluorescence quantum yield with dye loading was found, which was attributed to the occurrence of dimer fluorescence. Extension of the model to two luminescent species (i.e. monomer and dimer) yielded constant fluorescence quantum yields for the monomer, ΦM = 0.120 ± 0.004, and for the dimer, ΦD = 0.070 ± 0.006. The monomer quantum yield is close to the value found for the same dye in basic ethanol. The presence of fluorescent dimers and calculated quantum yields are supported by analysis of the excitation spectra and other experimental evidence. The possible occurrence of non-radiative energy transfer and the effect of surface charge on the properties of the dimer are analyzed. © The Royal Society of Chemistry and Owner Societies 2004.  |l eng 
593 |a INQUIMAE/DQIAyQF, FCEyN, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina 
690 1 0 |a ALCOHOL 
690 1 0 |a CELLULOSE 
690 1 0 |a DIMER 
690 1 0 |a MONOMER 
690 1 0 |a ROSE BENGAL 
690 1 0 |a ACID BASE BALANCE 
690 1 0 |a ADSORPTION KINETICS 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DIFFUSE REFLECTANCE SPECTROSCOPY 
690 1 0 |a DIMERIZATION 
690 1 0 |a DRUG ADSORPTION 
690 1 0 |a DRUG DETERMINATION 
690 1 0 |a ENERGY TRANSFER 
690 1 0 |a FLAME PHOTOMETRY 
690 1 0 |a FLUORESCENCE SPECTROSCOPY 
690 1 0 |a LUMINESCENCE 
690 1 0 |a MATHEMATICAL MODEL 
690 1 0 |a OBSERVATION 
690 1 0 |a PHOTOCHEMISTRY 
690 1 0 |a PHOTOSENSITIZATION 
690 1 0 |a PHYSICAL CHEMISTRY 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a QUANTUM CHEMISTRY 
690 1 0 |a QUANTUM YIELD 
690 1 0 |a SOLID STATE 
690 1 0 |a STEADY STATE 
690 1 0 |a SURFACE CHARGE 
690 1 0 |a ROMAN 
700 1 |a Lagorio, M.G. 
700 1 |a San Román, E. 
773 0 |d 2004  |g v. 3  |h pp. 674-680  |k n. 7  |p Photochem. Photobiol. Sci.  |x 1474905X  |t Photochemical and Photobiological Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-4344601166&doi=10.1039%2fb402484b&partnerID=40&md5=c880a844e9bed66a94b2fa20a74e276c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/b402484b  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1474905X_v3_n7_p674_Rodriguez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1474905X_v3_n7_p674_Rodriguez  |y Registro en la Biblioteca Digital 
961 |a paper_1474905X_v3_n7_p674_Rodriguez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 65454