An algebraic version of the Cantor-Bernstein-Schröder theorem

The Cantor-Bernstein-Schröder theorem of the set theory was generalized by Sikorski and Tarski to σ-complete boolean algebras, and recently by several authors to other algebraic structures. In this paper we expose an abstract version which is applicable to algebras with an underlying lattice structu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Freytes Solari, Héctor Carlos
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05118caa a22005777a 4500
001 PAPER-4444
003 AR-BaUEN
005 20250328101559.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-11144279853 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Freytes Solari, Héctor Carlos 
245 1 3 |a An algebraic version of the Cantor-Bernstein-Schröder theorem 
260 |c 2004 
270 1 0 |m Departamento de Matemática, Fac. de Ciencias Exactas Y Naturales, Univ. Buenos Aires, Cd. U.Argentina; email: hfreytes@dm.uba.ar 
504 |a Balbes, R., Dwinger, Ph., (1974) Distributive Lattices, , University of Missouri Press, Columbia 
504 |a Birkhoff, G., (1967) Lattice Theory, Third Edition, , AMS, Providence 
504 |a Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S., (1991) ŁUkasiewicz-Moisil Algebras, , North-Holland, Amsterdam 
504 |a Cignoli, R., Representation of Łukasiewicz and Post algebras by continuous functions (1972) Colloq. Math., 24, pp. 127-138 
504 |a R. Cignoli: Lectures at Buenos Aires University. 2000; Cignoli, R., D'Ottaviano, M.I., Mundici, D., (2000) Algebraic Foundations of Many-Valued Reasoning, , Kluwer, Dordrecht 
504 |a Cignoli, R., Torrens, A., An algebraic analysis of product logic (2000) Multiple Valued Logic, 5, pp. 45-65 
504 |a De Simone, A., Mundici, D., Navara, M., A Cantor-Bernstein Theorem for complete MV-algebras (2003) Czechoslovak Math. J, 53, pp. 437-447 
504 |a De Simone, A., Navara, M., Pták, P., On interval homogeneous orthomodular lattices (2001) Comment. Math. Univ. Carolin., 42, pp. 23-30 
504 |a Dvurečenskij, A., Pseudo MV-algebras are intervals in l-groups (2002) J. Austral. Math. Soc. (Ser. A), 72, pp. 427-445 
504 |a Dvurečenskij, A., On pseudo MV-algebras (2001) Soft Computing, 5, pp. 347-354 
504 |a Georgescu, G., Iorgulescu, A., Pseudo MV-algebras 
504 |a Hájek, P., (1998) Metamathematics of Fuzzy Logic, , Kluwer, Dordrecht 
504 |a Höhle, U., Commutative, residuated l-monoids (1995) A Handbook on the Mathematical Foundations of Fuzzy Set Theory, , Non-Classical Logics and their Applications to Fuzzy Subset. (U. Höhle, E. P. Klement, eds.). Kluwer, Dordrecht 
504 |a Jakubík, J., A theorem of Cantor-Bernstein type for orthogonally σ-complete pseudo MV-algebras Czechoslovak Math. J., , To appear 
504 |a Kalman, J.A., Lattices with involution (1958) Trans. Amer. Math. Soc., 87, pp. 485-491 
504 |a Koppelberg, S., (1989) Handbook of Boolean Algebras, 1. , (J. Donald Monk, ed.). North Holland, Amsterdam 
504 |a Kowalski, T., Ono, H., (2000) Residuated Lattices: An Algebraic Glimpse at Logics Without Contraction, , Preliminary report 
504 |a Maeda, F., Maeda, S., (1970) Theory of Symmetric Lattices, , Springer-Verlag, Berlin 
504 |a Sikorski, R., A generalization of theorem of Banach and Cantor-Bernstein (1948) Colloq. Math., 1, pp. 140-144 
504 |a Tarski, A., (1949) Cardinal Algebras, , Oxford University Press, New York 
506 |2 openaire  |e Política editorial 
520 3 |a The Cantor-Bernstein-Schröder theorem of the set theory was generalized by Sikorski and Tarski to σ-complete boolean algebras, and recently by several authors to other algebraic structures. In this paper we expose an abstract version which is applicable to algebras with an underlying lattice structure and such that the central elements of this lattice determine a direct decomposition of the algebra. Necessary and sufficient conditions for the validity of the Cantor-Bernstein-Schröder theorem for these algebras are given. These results are applied to obtain versions of the Cantor-Bernstein-Schröder theorem for σ-complete orthomodular lattices, Stone algebras, BL-algebras, MV-algebras, pseudo MV-algebras, Łukasiewicz and Post algebras of order n.  |l eng 
536 |a Detalles de la financiación: During the preparation of this paper the author was supported by a Fellowship from the FOMEC Program. 
593 |a Departamento de Matemática, Fac. de Ciencias Exactas Y Naturales, Univ. Buenos Aires, Cd. U., Argentina 
690 1 0 |a CENTRAL ELEMENTS 
690 1 0 |a FACTOR CONGRUENCES 
690 1 0 |a LATTICES 
690 1 0 |a VARIETIES 
773 0 |d 2004  |g v. 54  |h pp. 609-621  |k n. 3  |p Czech. Math. J.  |x 00114642  |t Czechoslovak Mathematical Journal 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-11144279853&doi=10.1007%2fs10587-004-6412-x&partnerID=40&md5=f05842369081c57c1db89d912372d458  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10587-004-6412-x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00114642_v54_n3_p609_Freytes  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00114642_v54_n3_p609_Freytes  |y Registro en la Biblioteca Digital 
961 |a paper_00114642_v54_n3_p609_Freytes  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 65397