Classical invariants and the quantization of chaotic systems

Various aspects concerning the role of short periodic orbitals (PO) in Gutzwiller's summation formula, for the semiclassical quantization of chaotic systems, were investigated. It was suggested that due to their exponential proliferation, long periodic orbits constitute a serious drawback in Gu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wisniacki, D.A
Otros Autores: Vergini, E., Benito, R.M, Borondo, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04886caa a22007817a 4500
001 PAPER-4441
003 AR-BaUEN
005 20230518203400.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-42749099927 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLEEE 
100 1 |a Wisniacki, D.A. 
245 1 0 |a Classical invariants and the quantization of chaotic systems 
260 |c 2004 
270 1 0 |m Wisniacki, D.A.; Departamento de Química C-IX, Univ. Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain 
506 |2 openaire  |e Política editorial 
504 |a Haake, F., (2001) Quantum Signatures of Chaos, , Springer, Berlin 
504 |a Stöckmann, H.-J., (1999) Quantum Chaos: An Introduction, , Cambridge University Press, Cambridge 
504 |a Ehrenfest, P., (1916) Verlagen Kon. Akad. Amsterdam, 25, p. 412 
504 |a (1967) Sources of Quantum Mechanics, , edited by B. L. Van der Waerden (Dover, New York) 
504 |a Einstein, A., (1917) Verh. Dtsch. Phys. Ges., 19, p. 82 
504 |a Lichtenberg, A.J., Lieberman, M.A., (1992) Regular and Chaotic Dynamics, , Springer, New York 
504 |a Gutzwiller, M.C., (1990) Chaos in Classical and Quantum Mechanics, , Springer, New York 
504 |a Gutzwiller, M.C., (1980) Phys. Rev. Lett., 45, p. 150 
504 |a Wintgen, D., (1987) Phys. Rev. Lett., 58, p. 1589 
504 |a note; Wisniacki, D.A., Vergini, E., (2000) Phys. Rev. E, 62, pp. R4513 
504 |a De Polavieja, G.G., Borondo, F., Benito, R.M., (1994) Phys. Rev. Lett., 73, p. 1613 
504 |a Vergini, E.G., Carlo, G.G., (2001) J. Phys. A, 34, p. 4525 
504 |a Vergini, E.G., Schneider, D., J. Phys. A, , submitted 
504 |a Ozorio De Almeida, A.M., (1989) Nonlinearity, 2, p. 519 
504 |a Tomsovic, S., Lefebvre, J.H., (1997) Phys. Rev. Lett., 79, p. 3629 
504 |a D. A. Wisniacki, E. Vergini, R. M. Benito, and F. Borondo, nlin.CD/0402022; Wisniacki, D.A., Borondo, F., Vergini, E., Benito, R.M., (2000) Phys. Rev. E, 62, pp. R7583 
504 |a (2000) Phys. Rev. E, 63, p. 066220 
504 |a Vergini, E.G., (2000) J. Phys. A, 33, p. 4709 
504 |a Vergini, E.G., Carlo, G.G., (2000) J. Phys. A, 33, p. 4717 
504 |a Fromhold, P.B., (1996) Nature (London), 380, p. 608 
504 |a Takagaki, Y., Ploog, K.H., (2000) Phys. Rev. E, 62, p. 4804 
520 3 |a Various aspects concerning the role of short periodic orbitals (PO) in Gutzwiller's summation formula, for the semiclassical quantization of chaotic systems, were investigated. It was suggested that due to their exponential proliferation, long periodic orbits constitute a serious drawback in Gutzwiller's theory of chaotic systems. It was found that the short PO, and their associated heteroclinic and homoclinic intersecting areas, are relevant contributions to the spectra. A semiclassical interpretation on the ways to localize structures along PO interact was also provided.  |l eng 
593 |a Departamento de Química C-IX, Univ. Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain 
593 |a Deptamento de Fisica J. J. Giambiagi, FCEN, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Departamento de Física, Comn. Natl. de Ener. Atómica, Av. del Libertador 8250, 1429 Buenos Aires, Argentina 
593 |a Departamento de Física, E. T. S. I. Agrónomos, Univ. Politécnica de Madrid, 28040 Madrid, Spain 
690 1 0 |a EIGENVALUES AND EIGENFUNCTIONS 
690 1 0 |a FOURIER TRANSFORMS 
690 1 0 |a FUNCTIONS 
690 1 0 |a HAMILTONIANS 
690 1 0 |a MATRIX ALGEBRA 
690 1 0 |a NANOTECHNOLOGY 
690 1 0 |a PROBABILITY 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a CHAOTIC SYSTEMS 
690 1 0 |a DYNAMICAL ANALYSIS 
690 1 0 |a GUTZWILLER'S THEORY 
690 1 0 |a SEMICLASSICAL THEORY OF QUANTUM CHAOS 
690 1 0 |a CHAOS THEORY 
700 1 |a Vergini, E. 
700 1 |a Benito, R.M. 
700 1 |a Borondo, F. 
773 0 |d 2004  |g v. 70  |h pp. 035202-1-035202-4  |k n. 3 2  |p Phys. Rev. E Stat. Nonlinear Soft Matter Phys.  |x 15393755  |t Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-42749099927&doi=10.1103%2fPhysRevE.70.035202&partnerID=40&md5=23dfa71ab914076f77085bbc66e13d99  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevE.70.035202  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15393755_v70_n32_p035202_Wisniacki  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15393755_v70_n32_p035202_Wisniacki  |y Registro en la Biblioteca Digital 
961 |a paper_15393755_v70_n32_p035202_Wisniacki  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 65394