Fluorescence of 4-aminophthalimide in supercritical CO 2-ethanol mixtures

Steady-state and time-resolved fluorescence studies of 4-aminophthalimide (AP) in neat supercritical CO 2 and supercritical CO 2-ethanol mixtures at 35 and 45 °C are presented. In neat CO 2, the emission maximum of AP shifts to the red upon density increase because of the increase of average number...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wetzler, D.E
Otros Autores: Fernández-Prini, R., Aramendía, P.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09392caa a22012617a 4500
001 PAPER-4388
003 AR-BaUEN
005 20230518203356.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-4644224789 
024 7 |2 cas  |a alcohol, 64-17-5; amide, 17655-31-1; carbon dioxide, 124-38-9, 58561-67-4 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CMPHC 
100 1 |a Wetzler, D.E. 
245 1 0 |a Fluorescence of 4-aminophthalimide in supercritical CO 2-ethanol mixtures 
260 |c 2004 
270 1 0 |m INQUIMAE and Depto. de Quim. Inorg., Analitica Y Quimica Fisica, FCEN, Univ. Buenos Aires, P.Argentina; email: pedro@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Thematic issue (1999) Chem. Rev., 99, pp. 353-634 
504 |a Bennett, G.E., Johnston, K., (1994) J. Chem. Phys., 98, p. 441 
504 |a Sun, Y.P., Fox, M.A., Johnston, K., (1992) J. Am. Chem. Soc., 114, p. 1187 
504 |a Zhang, J., Roek, D.P., Chateauneuf, J.E., Brennecke, J.F., (1997) J. Am. Chem. Soc., 119, p. 9980 
504 |a Khajehpour, M., Kauffman, J.F., (2000) J. Phys. Chem. A., 104, p. 9512 
504 |a Hyatt, J.A., (1984) J. Org. Chem., 49, p. 5097 
504 |a Yonker, C.R., Frye, S.L., Kolkworf, D.R., Smith, R.D., (1986) J. Chem. Phys., 90, p. 3022 
504 |a Sigman, M.E., Lindley, S.M., Leffler, J.E., (1985) J. Am. Chem. Soc., 107, p. 1471 
504 |a Kauffman, J.F., (2001) J. Phys. Chem. A., 105, p. 3433 
504 |a Lewis, J.E., Biswas, R., Robinson, A.G., Maroncelli, M., (2001) J. Phys. Chem. B., 105, p. 3306 
504 |a Kimura, Y., Hirota, N., (1999) J. Chem. Phys., 111, p. 5474 
504 |a Heitz, M.P., Maroncelli, M., (1997) J. Chem. Phys., 101, p. 5852 
504 |a Roberts, C.B., Zhang, J., Chateauneuf, J.E., Brennecke, J.F., (1993) J. Am. Chem. Soc., 115, p. 9576 
504 |a Zagrobelny, J., Betts, T.A., Bright, F.V., (1993) J. Am. Chem. Soc., 115, p. 701 
504 |a Tanko, J.M., Pacut, R., (2001) J. Am. Chem. Soc., 123, p. 5703 
504 |a Fletcher, B., Kamrudin Suleman, N., Tanko, J.M., (1998) J. Am. Chem. Soc., 120, p. 11839 
504 |a O'shea, K.E., Combes, J.R., Fox, M.A., Johnston, K., (1991) Photochem. Photobiol., 54, p. 571 
504 |a Andrew, D., Des Islet, B.T., Margaritis, A., Weedon, A.C., (1995) J. Am. Chem. Soc., 117, p. 6132 
504 |a Bakhshiev, N.G., Mazurenko, Y.T., Piterskaya, I.V., (1966) Opt. Spectrosc., 21, p. 307 
504 |a Bakhshiev, N.G., (1962) Opt. Spectrosc., 12, p. 309 
504 |a Ware, W.R., Lee, S.K., Brant, G.J., Chow, P.P., (1971) J. Chem. Phys., 54, p. 4729 
504 |a Harju, T., Huizer, A.H., Varma, C.A.G.O., (1995) Chem. Phys., 200, p. 215 
504 |a Laitinen, E., Salonen, K., Harju, T., (1996) J. Chem. Phys., 105, p. 9771 
504 |a Soujanya, T., Krishna, T.S.R., Samanta, A., (1992) J. Phys. Chem., 96, p. 8544 
504 |a Saroja, G., Samanta, A., (1995) Chem. Phys. Lett., 246, p. 506 
504 |a Das, S., Datta, A., Bhattacharyya, K., (1997) J. Phys. Chem. A., 101, p. 3299 
504 |a Datta, A., Das, S., Mandal, D., Pal, K., Bhattacharyya, K., (1997) Langmuir, 13, p. 6922 
504 |a Betts, T.A., Bright, F.V., (1990) Appl. Spectrosc., 44, p. 1203 
504 |a Pryor, B.A., Palmer, P.M., Andrews, P.M., Berger, M.B., Troxler, T., Topp, M.R., (1997) Chem. Phys. Lett., 271, p. 19 
504 |a Suppan, P.J., (1987) J. Chem. Soc. Faraday Trans. I, 83, p. 495 
504 |a Chapman, C.F., Fee, R.S., Maroncelli, M., (1995) J. Phys. Chem., 99, p. 4811 
504 |a Wetzler, D.E., Chesta, C., Fernández-Prini, R., Aramendía, P.F., (2002) J. Phys. Chem. A., 106, p. 2390 
504 |a Rapp, W., Klingenberg, H.H., Lessing, H.E., (1971) Ber. Bunsenges. Phys. Chem., 75, p. 883 
504 |a Lakowicz, J.R., (1999) Principles of Fluorescence Spectroscopy, , second ed. Kluwer Academic Plenum, NY 
504 |a Suppan, P., (1990) J. Photochem. Photobiol. a, 50, p. 293 
504 |a Moore, R.A., Lee, J., Robinson, G.W., (1985) J. Phys. Chem., 89, p. 3648 
504 |a Yuan, D., Brown, R.G., (1997) J. Phys. Chem. a, 101, p. 3461 
504 |a Kim, S., Johnston, K.P., (1987) Ind. Eng. Chem. Res., 26, p. 1206 
504 |a Kajimoto, O., (1999) Chem. Rev., 99, p. 355 
504 |a Otomo, J., Koda, S., (1999) Chem Phys., 242, p. 241 
504 |a Egorov, S.A., Yethiraj, A., Skinner, J.L., (2000) Chem. Phys. Lett., 317, p. 558 
504 |a Fernández Prini, R., (2002) J. Phys. Chem. B, 106, p. 3217 
504 |a Sciaini, G., Marceca, E., Fernández Prini, R., (2002) Phys. Chem. Chem. Phys., 4, p. 3400 
504 |a Kajimoto, O., Futakami, M., Kobayashi, T., Yamasaki, K., (1988) J. Phys. Chem., 92, p. 1347 
504 |a Wetzler, D.E., Aramendía, P.F., Japas, M.L., Fernández-Prini, R., (1998) Int. J. Thermophys., 19, p. 27 
504 |a Ely, J.F., Magee, J.W., Haynes, W.M., (1987) Gas Proc. Assoc., , Research Report 110 
504 |a Gurdial, G.S., Foster, N.R., Yun, S.L.J., Tilly, K.D., (1993) Supercritical Fluid Engineering Science, p. 34. , E. Kiran J.F. Brennecke ACS Washington, DC 
504 |a Jennings, D.W., Gude, M.T., Teja, A.S., (1993) Supercritical Fluid Engineering Science, p. 10. , E. Kiran J.F. Brennecke ACS Washington, DC 
504 |a Suzuki, K., Sue, H., Itou, M., Smith, R.L., Inomata, H., Arai, K., Saito, S., (1990) J. Chem. Eng. Data, 35, p. 63 
504 |a Flanagin, L.W., Balbuena, P.B., Johnston, K.P., Rossky, P.J., (1997) J. Phys. Chem. B, 101, p. 7998 
504 |a note; Reichardt, C., (1994) Chem. Rev., 94, p. 2319 
504 |a Marcus, Y., (1993) Chem. Soc. Rev., 22, p. 409 
504 |a Kim, T.G., Wolford, M.F., Topp, M.R., (2003) Photochem. Photobiol. Sci., 2, p. 576 
520 3 |a Steady-state and time-resolved fluorescence studies of 4-aminophthalimide (AP) in neat supercritical CO 2 and supercritical CO 2-ethanol mixtures at 35 and 45 °C are presented. In neat CO 2, the emission maximum of AP shifts to the red upon density increase because of the increase of average number of solvent molecules interacting with the probe. In CO 2-ethanol mixtures of different ethanol densities (0.025 and 0.125 M) the tendency upon CO 2 density increase is opposite. In mixtures, the CO 2 density increase, also increases the probability of exchange of the ethanol molecules interacting with AP by CO 2 molecules. This causes a blue shift that is bigger than the red shift caused by density increase. In all the cases, emission spectra were time independent in the nanosecond time range. This allowed to take solvation effects into account using a Langmuir adsorption model, under equilibrium conditions. This is the simplest association model that can semiquantitative describe the results and can successfully explain the lack of solvation entropic effects in emission of AP in the mixtures near the critical density of CO 2. © 2004 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, 0647, PICT 4438, PID 0388 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, TX28, TW10 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: R.F.P. and P.F.A. are members of Carrera del Investigador Científico (Research Staff) from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina). The work was supported by grants TW10 and TX28 from Universidad de Buenos Aires, PID 0388 (CONICET), PICT 4438 and 0647 (ANPCyT, Argentina). 
593 |a INQUIMAE and Depto. de Quim. Inorg., Analitica Y Quimica Fisica, FCEN, Univ. Buenos Aires, P., Argentina 
593 |a Unidad de Actividad Química, CNEA, Libertador 8250, 1428 Buenos A., Argentina 
690 1 0 |a 4-AMINOPHTHALIMIDE 
690 1 0 |a CARBON DIOXIDE 
690 1 0 |a FLUORESCENCE 
690 1 0 |a SOLVATHOCHROMIC 
690 1 0 |a SOLVATION 
690 1 0 |a SUPERCRITICAL FLUID 
690 1 0 |a ALCOHOL 
690 1 0 |a AMIDE 
690 1 0 |a CARBON DIOXIDE 
690 1 0 |a ARTICLE 
690 1 0 |a DENSITY 
690 1 0 |a ENTROPY 
690 1 0 |a FLUORESCENCE 
690 1 0 |a MATHEMATICAL MODEL 
690 1 0 |a MOLECULAR INTERACTION 
690 1 0 |a MOLECULAR PROBE 
690 1 0 |a SOLVATION 
690 1 0 |a STEADY STATE 
690 1 0 |a SUPERCRITICAL FLUID 
690 1 0 |a TEMPERATURE DEPENDENCE 
700 1 |a Fernández-Prini, R. 
700 1 |a Aramendía, P.F. 
773 0 |d 2004  |g v. 305  |h pp. 27-36  |k n. 1-3  |p Chem. Phys.  |x 03010104  |w (AR-BaUEN)CENRE-4155  |t Chemical Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-4644224789&doi=10.1016%2fj.chemphys.2004.06.030&partnerID=40&md5=b006f2d525c1e6f17a145bad6a035f21  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.chemphys.2004.06.030  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03010104_v305_n1-3_p27_Wetzler  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03010104_v305_n1-3_p27_Wetzler  |y Registro en la Biblioteca Digital 
961 |a paper_03010104_v305_n1-3_p27_Wetzler  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 65341