Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster

Knockdown resistance to high temperature is an ecologically important trait in small insects. A composite interval mapping was performed on the two major autosomes of Drosophila melanogaster to search for quantitative trait loci (QTL) affecting knockdown resistance to high temperature (KRHT). Two dr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Norry, F.M
Otros Autores: Dahlgaard, J., Loeschcke, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17486caa a22016697a 4500
001 PAPER-4373
003 AR-BaUEN
005 20230518203355.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-7044272749 
024 7 |2 cas  |a Genetic Markers 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MOECE 
100 1 |a Norry, F.M. 
245 1 0 |a Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster 
260 |c 2004 
270 1 0 |m Loeschcke, V.; Department of Ecology and Genetics, University of Aarhus, Bldg. 540, Ny Munkegade, DK-8000 Aarhus C, Denmark; email: volker.loeschcke@biology.au.dk 
506 |2 openaire  |e Política editorial 
504 |a Adams, M.D., Celniker, S.E., Holt, R.A., The genome sequence of Drosophila melanogaster (2000) Science, 287, pp. 2185-2195 
504 |a Anderson, A.R., Collinge, J.E., Hoffmann, A.A., Kellett, M., McKechnie, S.W., Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster (2003) Heredity, 90, pp. 195-201 
504 |a Basten, C.J., Weir, B.S., Zeng, Z.-B., (1999) QTL CARTOGRAPHER, Version 1.13. A Reference Manual and Tutorial for QTL Mapping, , Department of Statistics, North Carolina State University, Raleigh, NC 
504 |a Bendena, W.G., Clare, J.C., Traverse, K.L., Lakhotia, S.C., Pardue, M.L., Multiple inducers of the Drosophila heat shock locus 93D (hsrω): Inducer-specific patterns of the three transcripts (1989) Journal of Cell Biology, 108, pp. 2017-2028 
504 |a Bettencourt, B.R., Feder, F.E., Cavicchi, S., Experimental evolution of Hsp70 expression and thermotolerance in Drosophila melanogaster (1999) Evolution, 53, pp. 484-492 
504 |a Bettencourt, B.R., Kim, I.Y., Hoffmann, A.A., Feder, M.E., Response to natural and laboratory selection at the Drosophila hsp70 genes (2002) Evolution, 56, pp. 1796-1801 
504 |a Bubli, O., Imasheva, A.G., Loeschcke, V., Selection for knockdown resistance to heat in Drosophila melanogaster at high and low larval densities (1998) Evolution, 52, pp. 619-625 
504 |a Cavicchi, S., Guerra, D., La Torre, V., Huey, R.B., Chromosomal analysis of heat-shock tolerance in Drosophila melanogaster evolving at different temperatures in the laboratory (1995) Evolution, 49, pp. 676-684 
504 |a Colson, I., Macdonald, S.J., Goldstein, D.B., Microsatellite markers for interspecific mapping of Drosophila simulans and D. sechellia (1999) Molecular Ecology, 8, pp. 1951-1955 
504 |a Dahlgaard, J., Loeschcke, V., Michalak, P., Justesen, J., Acclimation, thermal resistance and associated expression of the heat-shock protein hsp70 in adult Drosophila melanogaster (1998) Functional Ecology, 12, pp. 786-793 
504 |a Didomenico, B.J., Bugaisky, G.E., Lindquist, S., The heat shock response is self-regulated at both the transcriptional and post-transcriptional levels (1982) Cell, 31, pp. 593-603 
504 |a Falconer, D.S., Mackay, T.F.C., (1996) Introduction to Quantitative Genetics, , Longman Group Limited, Essex, UK 
504 |a Feder, M.E., Cartano, N.V., Milos, L., Krebs, R.A., Lindquist, S.L., Effect of engineering hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster (1996) Journal of Experimental Biology, 199, pp. 1837-1844 
504 |a Feder, M.E., Hofmann, G.E., Heat-shock proteins, molecular chaperones, and the stress response (1999) Annual Review of Physiology, 61, pp. 243-282 
504 |a Fini, N.E., Bandena, W.G., Pardue, M.L., Unusual behavior of the cytoplasmic transcript of hsrω: An abundant, stress inducible RNA that is translated but yields no detectable protein product (1989) Journal of Cell Biology, 108, pp. 2045-2057 
504 |a Frydenberg, J., Hoffmann, A.A., Loeschcke, V., DNA sequence variation and latitudinal associations in hsp23, hsp26 and hsp 27 from natural populations of Drosophila melanogaster (2003) Molecular Ecology, 12, pp. 2025-2032 
504 |a Frydenberg, J., Pierpaoli, M., Loeschcke, V., Drosophila melanogaster is polymorphic for a specific repeated (CATA) sequence in the regulatory region of hsp23 (1999) Gene, 236, pp. 243-250 
504 |a Gilchrist, G.W., Huey, R.B., The direct response of Drosophila melanogaster to selection on knockdown temperature (1999) Heredity, 83, pp. 15-29 
504 |a Gockel, J., Kennington, W.J., Hoffman, A., Goldstein, D.B., Partridge, L., Non-clinality of molecular variation implicates selection in maintaining a morphological cline of Drosophila melanogaster (2001) Genetics, 158, pp. 319-323 
504 |a Gockel, J., Robinson, S.J.W., Kennington, W.J., Goldstein, D.B., Partridge, L., Quantitative genetic analysis of natural variation in body size in Drosophila melanogaster (2002) Heredity, 89, pp. 145-153 
504 |a Guerra, D.A., Loeschcke, V., Cavicchi, S., Chromosomal and cytoplasmic analysis of heat shock resistance in natural populations of Drosophila melanogaster (2000) Hereditas, 132, pp. 143-149 
504 |a Hoffmann, A.A., Anderson, A., Hallas, R., Opposing clines for high and low temperature resistance in Drosophila melanogaster (2002) Ecology Letters, 5, pp. 614-618 
504 |a Hoffmann, A.A., Dagher, H., Hercus, M., Berrigan, D., Comparing different measures of heat resistance in selected lines of Drosophila melanogaster (1997) Journal of Insect Physiology, 43, pp. 393-405 
504 |a Hoffmann, A.A., Parsons, A., (1991) Evolutionary Genetics and Environmental Stress, , Oxford University Press, Oxford 
504 |a Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches (2003) Journal of Thermal Biology, 28, pp. 175-216 
504 |a Huey, R.B., Crill, W.D., Kingsolver, J.G., Weber, K.E., A method for rapid measurement of heat or cold resistance of small insects (1992) Functional Ecology, 6, pp. 489-494 
504 |a Jiang, C., Zeng, Z.-B., Multiple trait analysis of genetic mapping for quantitative trait loci (1995) Genetics, 140, pp. 1111-1127 
504 |a Jones, C., The genetic basis of Drosophila sechellia's resistance to host plkast toxin (1998) Genetics, 149, pp. 1899-1908 
504 |a Kosambi, D.D., The estimation of map distances from recombination values (1944) Annual Eugenetics, 12, pp. 172-175 
504 |a Krebs, R.A., Feder, M.E., Natural variation in the expression of the heat-shock protein HSP70 in a population of Drosophila melanogaster and its correlation with tolerance of ecologically relevant thermal stress (1997) Evolution, 51, pp. 173-179 
504 |a Krebs, R.A., Feder, M.E., Lee, J., Heritability of expression of the 70KD heat-shock protein in Drosophila melanogaster and its relevance to the evolution of thermotolerance (1998) Evolution, 52, pp. 841-847 
504 |a Krebs, R.A., Loeschcke, V., Costs and benefits of activation of the heat shock response in Drosophila melanogaster (1994) Functional Ecology, 8, pp. 730-737 
504 |a Krebs, R.A., Loeschcke, V., Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster (1994) Journal of Evolutionary Biology, 7, pp. 39-49 
504 |a Krebs, R.A., Loeschcke, V., Acclimation and selection for increased resistance to thermal stress in Drosophila buzzatii (1996) Genetics, 142, pp. 471-479 
504 |a Kristensen, T.N., Dahlgaard, J., Loeschcke, V., Inbreeding affects the Hsp70 expression level in two species of Drosophila even at benign temperatures (2002) Evolution and Ecology Research, 4, pp. 1209-1216 
504 |a Leemans, R., Egger, B., Loop, T., Quantitative transcript imaging in normal and heat-shocked Drosophila embryos by using high-density oligonucleotide arrays (2000) Proceedings of the National Academy of Sciences USA, 97, pp. 12138-12143 
504 |a Lerman, D.N., Feder, M.E., Laboratory selection at different temperatures modifies heat-shock transcription factor (HSF) activation in Drosophila melanogaster (2001) Journal of Experimental Biology, 204, pp. 315-323 
504 |a Lerman, D.N., Michalak, P., Helin, A.B., Bettencourt, B.R., Feder, M.E., Modification of heat-shock gene expression in Drosophila melanogaster populations via transposable elements (2003) Molecular Biology and Evolution, 20, pp. 135-144 
504 |a Lindquist, S., The heat-shock response (1986) Annual Review of Biochemistry, 55, pp. 1151-1191 
504 |a Liu, J., Mercer, J.M., Stam, L.F., Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana (1996) Genetics, 142, pp. 1129-1145 
504 |a Loeschcke, V., Krebs, R.A., Selection for heat-shock resistance in larval and in adult Drosophila buzzatii: Comparing direct and indirect responses (1996) Evolution, 50, pp. 2354-2359 
504 |a Lynch, M., The rate of morphological evolution in mammals from the standpoint of the neutral expectation (1990) American Naturalist, 136, pp. 727-741 
504 |a Lynch, M., Walsh, B., (1998) Genetics and Analysis of Quantitative Traits, , Sinauer Associates, Inc., MA 
504 |a Mackay, T.F.C., Quantitative trait loci in Drosophila (1996) Nature Review, 2, pp. 11-20 
504 |a McColl, G., Hoffmann, A.A., McKechnie, S.W., Response to two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster (1996) Genetics, 143, pp. 1615-1627 
504 |a McKechnie, S.W., Halford, M.M., McColl, G., Hoffmann, A.A., Both allelic variation and expression of nuclear and cytoplasmic transcripts of Hsr-omega are closely associated with thermal phenotype of Drosophila (1998) Proceedings of the National Academy of Sciences USA, 95, pp. 2423-2428 
504 |a Morimoto, R.L., Tissieres, A., Georgopoulos, C., (1994) The Biology of Heat-Shock Proteins and Molecular Chaperons, , Cold Spring Harbor Press, New York 
504 |a Morrison, W.W., Milkman, R., Modification of heat resistance in Drosophila by selection (1978) Nature, 273, pp. 49-50 
504 |a Noor, M.A.F., Aimee, A.M., Larkin, J.C., Consequences of recombination rate variation on quantitative trait locus mapping studies: Simulations based on the Drosophila melanogaster genome (2001) Genetics, 159, pp. 581-588 
504 |a Norry, F.M., Loeschcke, V., Heat-induced expression of a molecular chaperone decreases by selecting for long-lived individuals (2003) Experimental Gerontology, 38, pp. 673-681 
504 |a Pardue, M.L., Bendena, W.G., Fini, M.E., Hsr-omega, a novel gene encoded by Drosophila heat shock puff (1990) Biological Bulletin, 179, pp. 77-86 
504 |a Parsell, D.A., Lindquist, S., The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins (1993) Annual Review of Genetics, 27, pp. 437-496 
504 |a Quintana, A., Prevosti, A., Genetic and environmental factors in the resistance of Drosophila subobscura adults to high temperature shock (1990) Theoretical and Applied Genetics, 79, pp. 103-107 
504 |a Rice, W.R., Analyzing tables of statistical tests (1989) Evolution, 43, pp. 223-225 
504 |a Schlötterer, C., Vogl, C., Tautz, D., Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations (1997) Genetics, 146, pp. 309-329 
504 |a Schug, M.D., Wetterstrand, K.A., Gaudette, M.S., The distribution of microsatellite loci in Drosophila melanogaster (1998) Molecular Ecology, 7, pp. 57-70 
504 |a Sørensen, J.G., Dahlgaard, J., Loeschcke, V., Genetic variation in natural populations of Drosophila buzzatii: Down regulation of Hsp70 expression and variation in heat stress traits (2001) Functional Ecology, 15, pp. 289-296 
504 |a Sørensen, J.G., Michalak, P., Justesen, J., Loeschcke, V., Expression of the heat shock protein HSP70 in Drosophila buzzatii lines selected for thermal resistance (1999) Hereditas, 131, pp. 155-164 
504 |a Velazquez, J.M., Didomenico, B.J., Lindquist, S., Intracelular localization of heat shock proteins in Drosophilia (1980) Cell, 20, pp. 679-689 
504 |a Velazquez, J.M., Sonoda, S., Bugaisky, G., Lindquist, S., Is the major Drosophilia heat shock protein present in cells that have not been shocked? (1983) Journal of Cell Biology, 96, pp. 286-290 
504 |a Weeks, A.R., McKechnie, S.W., Hoffmann, A.A., Dissecting adaptive clinal variation: Markers, inversions and size/stress associations in Drosophila melanogaster from a central field population (2002) Ecology Letters, 5, pp. 756-763 
504 |a Wheeler, J.C., Bieschke, E.T., Tower, J., Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress (1995) Proceedings of the National Academy of Sciences USA, 92, pp. 10408-10412 
504 |a Zeng, Z.-B., Precision mapping of quantitative trait loci (1994) Genetics, 136, pp. 1457-1468 
504 |a Zimmerman, E., Palsson, A., Gibson, G., Quantitative trait loci affecting components of wing shape in Drosophila melanogaster (2000) Genetics, 155, pp. 671-683 
520 3 |a Knockdown resistance to high temperature is an ecologically important trait in small insects. A composite interval mapping was performed on the two major autosomes of Drosophila melanogaster to search for quantitative trait loci (QTL) affecting knockdown resistance to high temperature (KRHT). Two dramatically divergent lines from geographically different thermal environments were artificially selected on KRHT. These lines were crossed to produce two backcross (BC) populations. Each BC was analysed for 200 males with 18 marker loci on chromosomes 2 and 3. Three X-linked markers were used to test for X-linked QTL in an exploratory way. The largest estimate of autosome additive effects was found in the pericentromeric region of chromosome 2, accounting for 19.26% (BC to the low line) and 29.15% (BC to the high line) of the phenotypic variance in BC populations, but it could represent multiple closely linked QTL. Complete dominance was apparent for three QTL on chromosome 3, where heat-shock genes are concentrated. Exploratory analysis of chromosome X indicated a substantial contribution of this chromosome to KRHT. The results show that a large-effect QTL with dominant gene action maps on the right arm of chromosome 3. Further, the results confirm that QTL for heat resistance are not limited to chromosome 3.  |l eng 
593 |a Department of Ecology and Genetics, University of Aarhus, Bldg. 540, Ny Munkegade, DK-8000 Aarhus C, Denmark 
593 |a Depto. de Ecologia, Genet. Y Evol., Fac. de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina 
593 |a Human Micro Array Centre, Dept. Clin. Biochem. Clin. Genet., Odense University Hospital, Sdr. Boulevard 29, 5100 Odense C, Denmark 
593 |a Natl. Cncl. Sci. Res. of Argentina, Argentina 
593 |a University of Buenos Aires, Argentina 
593 |a University of Southern Denmark, Odense University Hospital, Denmark 
593 |a Aarhus Ctr. for Environ. Stress Res., Denmark 
690 1 0 |a DOMINANCE 
690 1 0 |a DROSOPHILA 
690 1 0 |a HEAT-KNOCKDOWN RESISTANCE 
690 1 0 |a HEAT-SHOCK PROTEINS 
690 1 0 |a HEAT-STRESS RESISTANCE 
690 1 0 |a QTL 
690 1 0 |a THERMAL ADAPTATION 
690 1 0 |a MICROSATELLITE DNA 
690 1 0 |a ANIMAL 
690 1 0 |a ARTICLE 
690 1 0 |a CHROMOSOME MAP 
690 1 0 |a CROSS BREEDING 
690 1 0 |a DNA SEQUENCE 
690 1 0 |a DROSOPHILA MELANOGASTER 
690 1 0 |a GENETIC LINKAGE 
690 1 0 |a GENETIC MARKER 
690 1 0 |a GENETICS 
690 1 0 |a HEAT 
690 1 0 |a MALE 
690 1 0 |a MOLECULAR GENETICS 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a QUANTITATIVE TRAIT 
690 1 0 |a QUANTITATIVE TRAIT LOCUS 
690 1 0 |a X CHROMOSOME 
690 1 0 |a ANIMALS 
690 1 0 |a CHROMOSOME MAPPING 
690 1 0 |a CROSSES, GENETIC 
690 1 0 |a DROSOPHILA MELANOGASTER 
690 1 0 |a GENETIC MARKERS 
690 1 0 |a HEAT 
690 1 0 |a LOD SCORE 
690 1 0 |a MALE 
690 1 0 |a MICROSATELLITE REPEATS 
690 1 0 |a MOLECULAR SEQUENCE DATA 
690 1 0 |a QUANTITATIVE TRAIT LOCI 
690 1 0 |a QUANTITATIVE TRAIT, HERITABLE 
690 1 0 |a SEQUENCE ANALYSIS, DNA 
690 1 0 |a X CHROMOSOME 
690 1 0 |a DROSOPHILA MELANOGASTER 
690 1 0 |a HEXAPODA 
690 1 0 |a INSECTA 
690 1 0 |a MELANOGASTER 
700 1 |a Dahlgaard, J. 
700 1 |a Loeschcke, V. 
773 0 |d 2004  |g v. 13  |h pp. 3585-3594  |k n. 11  |p Mol. Ecol.  |x 09621083  |w (AR-BaUEN)CENRE-6150  |t Molecular Ecology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-7044272749&doi=10.1111%2fj.1365-294X.2004.02323.x&partnerID=40&md5=227738a9132e63d95b4d37e55cd393ec  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1365-294X.2004.02323.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09621083_v13_n11_p3585_Norry  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09621083_v13_n11_p3585_Norry  |y Registro en la Biblioteca Digital 
961 |a paper_09621083_v13_n11_p3585_Norry  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 65326