Binocular visual integration in the crustacean nervous system

Although the behavioral repertoire of crustaceans is largely guided by visual information their visual nervous system has been little explored. In search for central mechanisms of visual integration, this study was aimed at identifying and characterizing brain neurons in the crab involved in binocul...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sztarker, J.
Otros Autores: Tomsic, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2004
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12200caa a22011537a 4500
001 PAPER-4371
003 AR-BaUEN
005 20230518203355.0
008 190411s2004 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-11244279696 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCPAD 
100 1 |a Sztarker, J. 
245 1 0 |a Binocular visual integration in the crustacean nervous system 
260 |c 2004 
270 1 0 |m Tomsic, D.; Lab. Neurbio. de la Memoria IFIBYNE, Depto. Fisiol., Biol. Molec. Y Cel., Pabellón 2 Cd. Universitaria, Buenos Aires, Argentina; email: tomsic@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Backwell, P.R., Christy, J.H., Telford, S.R., Jennions, M.D., Passmore, N.I., Dishonest signalling in a fiddler crab (2000) Proc R Soc Lond B Biol Sci, 267, pp. 719-724 
504 |a Barnes, W.J.P., Johnson, A.P., Horseman, G.B., Macauley, M.W.S., Computer-aided studies of vision in crabs (2002) Mar Fresh Behav Physiol, 35, pp. 37-56 
504 |a Berón De Astrada, M., Tomsic, D., Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura) (2002) J Comp Physiol A, 188, pp. 539-551 
504 |a Berón De Astrada, M., Sztarker, J., Tomsic, D., Visual interneurons of the crab Chasmagnathus studied by intracellular recordings in vivo (2001) J Comp Physiol A, 187, pp. 37-44 
504 |a Blanke, H., Nalbach, H.-O., Varjú, D., Whole-field integration, not detailed analysis, is used by the crab optokinetic system to separate rotation and translation in optic flow (1997) J Comp Physiol A, 181, pp. 383-392 
504 |a Cannicci, S., Barelli, C., Vannini, M., Homing in the swimming crab Thalamita crenata: A mechanism based on underwater landmark memory (2000) Anim Behav, 60, pp. 203-210 
504 |a Duman-Scheel, M., Pirkl, N., Patel, N.H., Analysis of the expression pattern of Mysidium columbiae wingless provides evidence for conserved mesodermal and retinal patterning processes among insects and crustaceans (2002) Dev Genes Evol, 212, pp. 114-123 
504 |a Edwards, D.H., Heitler, W.J., Krasne, F.B., Fifty years of a command neuron: The neurobiology of escape behavior in the crayfish (1999) Trends Neurosci, 22, pp. 153-161 
504 |a Egelhaaf, M., Borst, A., Warzecha, A.K., Flecks, S., Wildemann, A., Neural circuit tuning fly visual neurons to motion of small objects II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques (1993) J Neurophysiol, 69, pp. 340-351 
504 |a Freudenthal, R., Romano, A., Participation of REL/NF-kB transcription factors in long-term memory in the crab Chasmagnathus (2000) Brain Res, 855, pp. 274-281 
504 |a Glantz, R.M., Kirk, M., Viancour, T., Interneurons of the crayfish brain: The relationship between dendrite location and afferent input (1981) J Neurobiol, 12, pp. 311-328 
504 |a Hemmi, J.M., Zeil, J., Robust judgement of inter-object distance by an arthropod (2003) Nature, 421, pp. 160-163 
504 |a Herberholz, J., Issa, F.A., Edwards, D.H., Patterns of neural circuits activation and behavior during dominance hierarchy formation in freely behaving crayfish (2001) J Neurosci, 21, pp. 2759-2767 
504 |a Johnson, A.P., Horseman, B.G., Macauley, M.W., Barnes, W.J., PC-based visual stimuli for behavioural and electrophysiological studies of optic flow field detection (2002) J Neurosci Methods, 114, pp. 51-61 
504 |a Kern, R., Nalbach, H.-O., Varjú, D., Interactions of local movement detectors enhance the detection of rotation. Optokinetic experiments with the rock crab, Pachygrapsus marmoratus (1993) Vis Neurosci, 10, pp. 643-646 
504 |a Krasne, F.B., Shamsian, A., Kulkarni, R., Altered excitability of the crayfish lateral giant escape reflex during agonistic encounters (1997) J Neurosci, 17, pp. 709-716 
504 |a Land, M.F., Layne, J., The visual control of behaviour in fiddler crabs: I. Resolution, thresholds and the role of the horizon (1995) J Comp Physiol A, 177, pp. 81-90 
504 |a Laughlin, S.B., Form and function in visual processing (1987) Trends Neurosci, 10, pp. 478-483 
504 |a Layne, J., Land, M.F., Zeil, J., Fiddler crabs use the visual horizon to distinguish predators from conspecifics: A review of the evidence (1997) J Mar Biol Assoc UK, 77, pp. 43-54 
504 |a Lozada, M., Romano, A., Maldonado, H., Long-term habituation to a danger stimulus in the crab Chasmagnathus granulatus (1990) Physiol Behav, 47, pp. 35-41 
504 |a Miller, C.S., Johnson, D.H., Schroeter, J.P., Myint, L., Glantz, R.M., Visual responses of crayfish ocular motoneurons: An information theoretical analysis (2003) J Comput Neurosci, 15, pp. 247-269 
504 |a Nalbach, H.-O., Thier, P., Varjú, D., Binocular interaction in the optokinetic system of the crab Carcinus maenas (L.): Optokinetic gain modified by bilateral image flow (1993) Vis Neurosci, 10, pp. 873-885 
504 |a Osorio, D., Bacon, J.P., A good eye for arthropod evolution (1994) Bioassays, 16, pp. 419-424 
504 |a Pedreira, M.E., Maldonado, H., Protein synthesis subserves reconsolidation or extinction depending on reminder duration (2003) Neuron, 38, pp. 863-869 
504 |a Pedreira, M.E., Pérez-Cuesta, L., Maldonado, H., Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: Protein synthesis requirement and mediation by NMDA-type glutamatergic receptors (2002) J Neurosci, 22, pp. 8305-8311 
504 |a Sinakevitch, I., Douglass, J.K., Scholtz, G., Loeser, R., Strausfeld, N.J., Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa (2003) J Comp Neurol, 467, pp. 150-172 
504 |a Strausfeld, N.J., Crustacean - Insect relationships: The use of brain characters to derive phylogeny amongst segmented invertebrates (1998) Brain Behav Evol, 52, pp. 186-206 
504 |a Strausfeld, N.J., Nässel, D.R., Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insect (1981) Handbook of Sensory Physiology, VII/6B, Vision in Invertebrates, pp. 1-132. , Autrum (ed) Springer, Berlin Heidelberg New York 
504 |a Tomsci, D., Rakitin, A., Maldonado, H., Morphine and GABA: Effect on perception, escape response and long term habituation to a danger stimulus in the crab Chasmagnathus (1991) Brain Res Bull, 26, pp. 699-706 
504 |a Tomsic, D., Massoni, V., Maldonado, H., Habituation to a danger stimulus in two semiterrestrial crabs. Ontogenic, ecological and opioid system correlates (1993) J Comp Physiol A, 173, pp. 621-633 
504 |a Tomsic, D., Pedreira, M.E., Romano, A., Hermite, G., Maldonado, H., Context-US association as a determinant of long-term habituation in the crab Chasmagnathus (1998) Anim Learn Behav, 26, pp. 196-209 
504 |a Tomsic, D., Berón De Astrada, M., Sztarker, J., Identification of individual neurons reflecting short- And long-term visual memory in an arthropod (2003) J Neurosci, 23, pp. 8539-8546 
504 |a Waterman, T.H., Wiersma, C.A.G., Bush, B.M.H., Afferent visual responses in the optic nerve of the crab, Podophthalmus (1964) J Cell Comp Physiol, 63, pp. 135-155 
504 |a Wiersma, C.A.G., Yamaguchi, T., The neuronal components of the optic nerve of the crayfish as studied by single unit analysis (1966) J Comp Neurol, 128, pp. 333-358 
504 |a Wiersma, C.A.G., Bush, B.M.H., Waterman, T.H., Efferent visual responses of contralateral origin in the optic nerve of the crab Podophthalmus (1964) J Cell Comp Physiol, 64, pp. 309-326 
504 |a Wiersma, C.A.G., Roach, J.L.M., Glantz, R.M., Neural integration in the optic system (1982) The Biology of the Crustacea. Neural Integration and Behavior, 4, pp. 1-31. , Sandeman DC, Atwood HL (eds) Academic, New York 
504 |a Zeil, J., Hoffmann, M., Signals from 'crabworld': Cuticular reflections in a fiddler crab colony (2001) J Exp Biol, 204, pp. 2561-2569 
504 |a Zeil, J., Nalbach, G., Nalbach, H.-O., Eyes, eyes stalks and the visual world of semi-terrestrial crabs (1986) J Comp Physiol A, 159, pp. 801-811 
520 3 |a Although the behavioral repertoire of crustaceans is largely guided by visual information their visual nervous system has been little explored. In search for central mechanisms of visual integration, this study was aimed at identifying and characterizing brain neurons in the crab involved in binocular visual processing. The study was performed in the intact animal, by recording intracellularly the response to visual stimuli of neurons from one of the two optic lobes. Identified neurons recorded from the medulla (second optic neuropil), which include sustaining neurons, dimming neurons, depolarizing and hyperpolarizing tonic neurons and on-off neurons, all presented exclusively monocular (ipsilateral) responses. In contrast, all wide field movement detector neurons recorded from the lobula (third optic neuropil) responded to moving stimuli presented to the ipsilateral and to the contralateral eye. In these cells, the responses evoked by ipsilateral or contralateral stimulation were almost identical, as revealed by analysing the number and amplitude of the elicited postsynaptic potentials and spikes, and the ability to habituate upon repeated visual stimulation. The results demonstrate that in crustaceans important binocular processing takes place at the level of the lobula. © Springer-Verlag 2004.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Fundación Antorchas 
536 |a Detalles de la financiación: National Council for Scientific Research 
536 |a Detalles de la financiación: Acknowledgements We thank Dr. Héctor Maldonado for fruitful discussions and corrections of the manuscript. The work has been supported by the National Research Council of Argentina, by the University of Buenos Aires and by Fundación Antorchas. Experimental procedures are in compliance with the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health. 
593 |a Lab. Neurbio. de la Memoria IFIBYNE, Depto. Fisiol., Biol. Molec. Y Cel., Pabellón 2 Cd. Universitaria, Buenos Aires, Argentina 
690 1 0 |a BINOCULAR NEURONS 
690 1 0 |a CHASMAGNATHUS 
690 1 0 |a CRUSTACEA 
690 1 0 |a IN VIVO INTRACELLULAR RECORDINGS 
690 1 0 |a MOTION DETECTION 
690 1 0 |a ACTION POTENTIAL 
690 1 0 |a ANIMAL 
690 1 0 |a ARTICLE 
690 1 0 |a BINOCULAR VISION 
690 1 0 |a BRAIN 
690 1 0 |a CRUSTACEA 
690 1 0 |a MALE 
690 1 0 |a METHODOLOGY 
690 1 0 |a MOVEMENT PERCEPTION 
690 1 0 |a OPTIC LOBE 
690 1 0 |a PHOTOSTIMULATION 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a SENSORY NERVE CELL 
690 1 0 |a ACTION POTENTIALS 
690 1 0 |a ANIMALS 
690 1 0 |a BRAIN 
690 1 0 |a CRUSTACEA 
690 1 0 |a MALE 
690 1 0 |a MOTION PERCEPTION 
690 1 0 |a NEURONS, AFFERENT 
690 1 0 |a OPTIC LOBE 
690 1 0 |a PHOTIC STIMULATION 
690 1 0 |a VISION, BINOCULAR 
700 1 |a Tomsic, D. 
773 0 |d 2004  |g v. 190  |h pp. 951-962  |k n. 11  |p J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.  |x 03407594  |w (AR-BaUEN)CENRE-233  |t Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-11244279696&doi=10.1007%2fs00359-004-0551-2&partnerID=40&md5=d2f53b4651da02afb82c62b9ab7d145a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00359-004-0551-2  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03407594_v190_n11_p951_Sztarker  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03407594_v190_n11_p951_Sztarker  |y Registro en la Biblioteca Digital 
961 |a paper_03407594_v190_n11_p951_Sztarker  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 65324