Remarks on Priestley duality for distributive lattices
The notion of a Priestley relation between Priestley spaces is introduced, and it is shown that there is a duality between the category of bounded distributive lattices and 0-preserving join-homomorphisms and the category of Priestley spaces and Priestley relations. When restricted to the category o...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Kluwer Academic Publishers
1991
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 05834caa a22006497a 4500 | ||
|---|---|---|---|
| 001 | PAPER-433 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518202947.0 | ||
| 008 | 190411s1991 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-0039715858 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Cignoli, R. | |
| 245 | 1 | 0 | |a Remarks on Priestley duality for distributive lattices |
| 260 | |b Kluwer Academic Publishers |c 1991 | ||
| 270 | 1 | 0 | |m Cignoli, R.; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Ada, M.E., The Frattini sublattice of a distributive lattice (1973) Algebra Universalis, 3, pp. 216-228 | ||
| 504 | |a Bacsich, P.D., Extension of Boolean homomorphisms with bounding semimorphisms (1972) J. reine angew. Math., 253, pp. 24-27 | ||
| 504 | |a Balbes, R., Dwinger, P., (1979) Distributive Lattices, , University of Missouri Press, Columbia | ||
| 504 | |a Cignoli, R., A Hahn-Banach theorem for distributive lattices (1971) Rev. Un. Mat. Argentina, 25, pp. 335-342 | ||
| 504 | |a R. Cignoli (1991) Quantifiers on distributive lattices, Discrete Math., to appear; Davis, C., Modal operators, equivalence relations, and projective algebras (1954) Amer. J. Math., 76, pp. 217-249 | ||
| 504 | |a Graf, S., A selection theorem for Boolean correspondences (1977) J. reine angew. Math., 295, pp. 169-186 | ||
| 504 | |a Gluschankof, D., Tilli, M., On some extensions theorems in functional analysis and the theory of Boolean algebras (1987) Rev. Un. Mat. Argentina, 33, pp. 44-54 | ||
| 504 | |a Halmos, P.R., Algebraic logic, I. Monadic Boolean algebras (1955) Compositio Math., 12, pp. 217-249 | ||
| 504 | |a Halmos, P.R., (1962) Algebraic Logic, , Chelsea Pub. Co., New York | ||
| 504 | |a Hansoul, G., A duality for Boolean algebras with operators (1983) Algebra Universalis, 17, pp. 34-49 | ||
| 504 | |a Jónsson, B., Tarski, A., Boolean algebras with operators I (1951) American Journal of Mathematics, 73, pp. 891-938 | ||
| 504 | |a Klimovsky, G., El teorema de Zorn y la existencia de filtros e ideales maximales en los reticulados distributivos (1958) Rev. Un. Mat. Argentina, 18, pp. 160-164 | ||
| 504 | |a Kippelberg, S., Topological duality (1989) Handbook of Boolean Algebras, pp. 95-126. , J. D., Monk, R., Bonnet, North-Holland, Amsterdam-New York-Oxford-Tokyo | ||
| 504 | |a Monteiro, A., Généralisation d'un théorème de R. Sikorski sur les algèbres de Boole (1965) Bull. Sci. Math., 89 (2), pp. 65-74 | ||
| 504 | |a Priestley, H.A., Representation of distributive lattices by means of ordered Stone spaces (1970) Bulletin of the London Mathematical Society, 2, pp. 186-190 | ||
| 504 | |a Priestley, H.A., Ordered topological spaces and the representation of distributive lattices (1972) Proc. London Math. Soc., 2 (4), pp. 507-530 | ||
| 504 | |a Priestley, H.A., Ordered sets and duality for distributive lattices (1984) Ann. Discrete Math., 23, pp. 39-60 | ||
| 504 | |a Servi, M., Un'assiomatizzazione dei reticoli esistenziali (1979) Boll. Un. Mat. Ital. A, 16 (5), pp. 298-301 | ||
| 504 | |a Vrancken-Mawet, L., The lattice of R-subalgebras of a bounded distributive lattice (1984) Comment. Math. Univ. Carolin., 25, pp. 1-17 | ||
| 504 | |a Wright, F.B., Some remarks on Boolean duality (1957) Portugal. Math., 16, pp. 109-117 | ||
| 520 | 3 | |a The notion of a Priestley relation between Priestley spaces is introduced, and it is shown that there is a duality between the category of bounded distributive lattices and 0-preserving join-homomorphisms and the category of Priestley spaces and Priestley relations. When restricted to the category of bounded distributive lattices and 0-1-preserving homomorphisms, this duality yields essentially Priestley duality, and when restricted to the subcategory of Boolean algebras and 0-preserving join-homomorphisms, it coincides with the Halmos-Wright duality. It is also established a duality between 0-1-sublattices of a bounded distributive lattice and certain preorder relations on its Priestley space, which are called lattice preorders. This duality is a natural generalization of the Boolean case, and is strongly related to one considered by M. E. Adams. Connections between both kinds of dualities are studied, obtaining dualities for closure operators and quantifiers. Some results on the existence of homomorphisms lying between meet and join homomorphisms are given in the Appendix. © 1991 Kluwer Academic Publishers. |l eng | |
| 593 | |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina | ||
| 690 | 1 | 0 | |a AMS SUBJECT CLASSIFICATION (1991): 06D05 |
| 690 | 1 | 0 | |a BOUNDED DISTRIBUTIVE LATTICES |
| 690 | 1 | 0 | |a CLOSURE OPERATORS |
| 690 | 1 | 0 | |a FILTERS |
| 690 | 1 | 0 | |a IDEALS |
| 690 | 1 | 0 | |a LATTICE HOMOMORPHISMS |
| 690 | 1 | 0 | |a PRIESTLEY SPACES |
| 690 | 1 | 0 | |a QUANTIFIERS |
| 690 | 1 | 0 | |a SUBLATTICES |
| 700 | 1 | |a Lafalce, S. | |
| 700 | 1 | |a Petrovich, A. | |
| 773 | 0 | |d Kluwer Academic Publishers, 1991 |g v. 8 |h pp. 299-315 |k n. 3 |p Order |x 01678094 |w (AR-BaUEN)CENRE-600 |t Order | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0039715858&doi=10.1007%2fBF00383451&partnerID=40&md5=abc12fd047708f2a39aba342d8d357bc |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/BF00383451 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_01678094_v8_n3_p299_Cignoli |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01678094_v8_n3_p299_Cignoli |y Registro en la Biblioteca Digital |
| 961 | |a paper_01678094_v8_n3_p299_Cignoli |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 61386 | ||