Remarks on Priestley duality for distributive lattices

The notion of a Priestley relation between Priestley spaces is introduced, and it is shown that there is a duality between the category of bounded distributive lattices and 0-preserving join-homomorphisms and the category of Priestley spaces and Priestley relations. When restricted to the category o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cignoli, R.
Otros Autores: Lafalce, S., Petrovich, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Kluwer Academic Publishers 1991
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05834caa a22006497a 4500
001 PAPER-433
003 AR-BaUEN
005 20230518202947.0
008 190411s1991 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0039715858 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Cignoli, R. 
245 1 0 |a Remarks on Priestley duality for distributive lattices 
260 |b Kluwer Academic Publishers  |c 1991 
270 1 0 |m Cignoli, R.; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Ada, M.E., The Frattini sublattice of a distributive lattice (1973) Algebra Universalis, 3, pp. 216-228 
504 |a Bacsich, P.D., Extension of Boolean homomorphisms with bounding semimorphisms (1972) J. reine angew. Math., 253, pp. 24-27 
504 |a Balbes, R., Dwinger, P., (1979) Distributive Lattices, , University of Missouri Press, Columbia 
504 |a Cignoli, R., A Hahn-Banach theorem for distributive lattices (1971) Rev. Un. Mat. Argentina, 25, pp. 335-342 
504 |a R. Cignoli (1991) Quantifiers on distributive lattices, Discrete Math., to appear; Davis, C., Modal operators, equivalence relations, and projective algebras (1954) Amer. J. Math., 76, pp. 217-249 
504 |a Graf, S., A selection theorem for Boolean correspondences (1977) J. reine angew. Math., 295, pp. 169-186 
504 |a Gluschankof, D., Tilli, M., On some extensions theorems in functional analysis and the theory of Boolean algebras (1987) Rev. Un. Mat. Argentina, 33, pp. 44-54 
504 |a Halmos, P.R., Algebraic logic, I. Monadic Boolean algebras (1955) Compositio Math., 12, pp. 217-249 
504 |a Halmos, P.R., (1962) Algebraic Logic, , Chelsea Pub. Co., New York 
504 |a Hansoul, G., A duality for Boolean algebras with operators (1983) Algebra Universalis, 17, pp. 34-49 
504 |a Jónsson, B., Tarski, A., Boolean algebras with operators I (1951) American Journal of Mathematics, 73, pp. 891-938 
504 |a Klimovsky, G., El teorema de Zorn y la existencia de filtros e ideales maximales en los reticulados distributivos (1958) Rev. Un. Mat. Argentina, 18, pp. 160-164 
504 |a Kippelberg, S., Topological duality (1989) Handbook of Boolean Algebras, pp. 95-126. , J. D., Monk, R., Bonnet, North-Holland, Amsterdam-New York-Oxford-Tokyo 
504 |a Monteiro, A., Généralisation d'un théorème de R. Sikorski sur les algèbres de Boole (1965) Bull. Sci. Math., 89 (2), pp. 65-74 
504 |a Priestley, H.A., Representation of distributive lattices by means of ordered Stone spaces (1970) Bulletin of the London Mathematical Society, 2, pp. 186-190 
504 |a Priestley, H.A., Ordered topological spaces and the representation of distributive lattices (1972) Proc. London Math. Soc., 2 (4), pp. 507-530 
504 |a Priestley, H.A., Ordered sets and duality for distributive lattices (1984) Ann. Discrete Math., 23, pp. 39-60 
504 |a Servi, M., Un'assiomatizzazione dei reticoli esistenziali (1979) Boll. Un. Mat. Ital. A, 16 (5), pp. 298-301 
504 |a Vrancken-Mawet, L., The lattice of R-subalgebras of a bounded distributive lattice (1984) Comment. Math. Univ. Carolin., 25, pp. 1-17 
504 |a Wright, F.B., Some remarks on Boolean duality (1957) Portugal. Math., 16, pp. 109-117 
520 3 |a The notion of a Priestley relation between Priestley spaces is introduced, and it is shown that there is a duality between the category of bounded distributive lattices and 0-preserving join-homomorphisms and the category of Priestley spaces and Priestley relations. When restricted to the category of bounded distributive lattices and 0-1-preserving homomorphisms, this duality yields essentially Priestley duality, and when restricted to the subcategory of Boolean algebras and 0-preserving join-homomorphisms, it coincides with the Halmos-Wright duality. It is also established a duality between 0-1-sublattices of a bounded distributive lattice and certain preorder relations on its Priestley space, which are called lattice preorders. This duality is a natural generalization of the Boolean case, and is strongly related to one considered by M. E. Adams. Connections between both kinds of dualities are studied, obtaining dualities for closure operators and quantifiers. Some results on the existence of homomorphisms lying between meet and join homomorphisms are given in the Appendix. © 1991 Kluwer Academic Publishers.  |l eng 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a AMS SUBJECT CLASSIFICATION (1991): 06D05 
690 1 0 |a BOUNDED DISTRIBUTIVE LATTICES 
690 1 0 |a CLOSURE OPERATORS 
690 1 0 |a FILTERS 
690 1 0 |a IDEALS 
690 1 0 |a LATTICE HOMOMORPHISMS 
690 1 0 |a PRIESTLEY SPACES 
690 1 0 |a QUANTIFIERS 
690 1 0 |a SUBLATTICES 
700 1 |a Lafalce, S. 
700 1 |a Petrovich, A. 
773 0 |d Kluwer Academic Publishers, 1991  |g v. 8  |h pp. 299-315  |k n. 3  |p Order  |x 01678094  |w (AR-BaUEN)CENRE-600  |t Order 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0039715858&doi=10.1007%2fBF00383451&partnerID=40&md5=abc12fd047708f2a39aba342d8d357bc  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/BF00383451  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01678094_v8_n3_p299_Cignoli  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01678094_v8_n3_p299_Cignoli  |y Registro en la Biblioteca Digital 
961 |a paper_01678094_v8_n3_p299_Cignoli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 61386