Selective serotonin reuptake inhibitors induce spontaneous interneuronal activity in the leech nervous system

Serotonin [5-hydroxytryptamine (5-HT)] is a conspicuous neuromodulator of sensory-motor networks that affects a variety of neurons at different levels of the network hierarchy. Because of its many possible targets, it has been difficult to obtain a comprehensive picture of how 5-HT achieves its fina...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Calviño, M.A
Otros Autores: Iscla, I.R, Szczupak, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2005
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17147caa a22015857a 4500
001 PAPER-4134
003 AR-BaUEN
005 20230518203339.0
008 190411s2005 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-17644415335 
024 7 |2 cas  |a citalopram, 59729-33-8; clomipramine, 17321-77-6, 303-49-1; fluoxetine, 54910-89-3, 56296-78-7, 59333-67-4; imipramine, 113-52-0, 50-49-7; serotonin, 50-67-9; Adrenergic Uptake Inhibitors; Citalopram, 59729-33-8; Fluoxetine, 54910-89-3; Imipramine, 50-49-7; Paroxetine, 61869-08-7; Serotonin Uptake Inhibitors; Serotonin, 50-67-9 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JONEA 
100 1 |a Calviño, M.A. 
245 1 0 |a Selective serotonin reuptake inhibitors induce spontaneous interneuronal activity in the leech nervous system 
260 |c 2005 
270 1 0 |m Szczupak, L.; LFBM, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina; email: szczupak@mail.retina.ar 
506 |2 openaire  |e Política editorial 
504 |a Acosta-Urquidi, J., Sahley, C.L., Kleinhaus, A.L., Serotonin differentially modulates two K+ currents in the retzius cell of the leech (1989) J Exp Biol, 145, pp. 403-417 
504 |a Andrade, R., Nicoll, R.A., Pharmacologically distinct actions of serotonin on single pyramidal neurons of the rat hippocampus recorded in vitro (1987) J Physiol, 394, pp. 99-124 
504 |a Angstadt, J.D., Friesen, W.O., Modulation of swimming behavior in the medicinal leech. I. Effects of serotonin on the electrical properties of swim-gating cell 204 (1993) J Comp Physiol A Sens Neural Behav Physiol, 172, pp. 223-234 
504 |a Angstadt, J.D., Friesen, W.O., Modulation of swimming behavior in the medicinal leech. II. Ionic conductances underlying serotonergic modulation of swim-gating cell 204 (1993) J Comp Physiol A Sens Neural Behav Physiol, 172, pp. 235-248 
504 |a Baader, A.P., Interneuronal and motor patterns during crawling behavior of semi-intact leeches (1997) J Exp Biol, 200, pp. 1369-1381 
504 |a Baccus, S.A., Burrell, B.D., Sahley, C.L., Muller, K.J., Action potential reflection and failure at axon branch points cause stepwise changes in EPSPs in a neuron essential for learning (2000) J Neurophysiol, 83, pp. 1693-1700 
504 |a Ballanyi, K., Onimaru, H., Homma, I., Respiratory network function in the isolated brainstem-spinal cord of newborn rats (1999) Prog Neurobiol, 58, pp. 583-634 
504 |a Barbas, D., DesGroseillers, L., Castellucci, V.F., Carew, T.J., Marinesco, S., Multiple serotonergic mechanisms contributing to sensitization in Aplysia: Evidence of diverse serotonin receptor subtypes (2003) Learn Mem, 10, pp. 373-386 
504 |a Barnes, N.M., Sharp, T., A review of central 5-HT receptors and their function (1999) Neuropharmacology, 38, pp. 1083-1152 
504 |a Baylor, D.A., Nicholls, J.G., Chenical and electrical synaptic connections between cutaneous mechanoreceptor neurons in the central nervous system of the leech (1969) J Physiol, 203, pp. 591-609 
504 |a Beato, M., Nistri, A., Serotonin-induced inhibition of locomotor rhythm of the rat isolated spinal cord is mediated by the 5-HT1 receptor class (1998) Proc R Soc Lond B Biol Sci, 265, pp. 2073-2080 
504 |a Belardetti, F., Biondi, C., Colombaioni, L., Brunelli, M., Trevisani, A., Role of serotonin and cyclic AMP on facilitation of the fast conducting system activity in the leech Hirudo medicinalis (1982) Brain Res, 246, pp. 89-103 
504 |a Blitz, D.M., Nusbaum, M.P., Distinct functions for cotransmitters mediating motor pattern selection (1999) J Neurosci, 19, pp. 5774-5783 
504 |a Brodfuehrer, P.D., Thorogood, M.S.E., Identified neurons and leech swimming behavior (2001) Prog Neurobiol, 63, pp. 371-381 
504 |a Bruns, D., Engert, F., Lux, H.-D., A fast activating presynaptic reuptake current during serotoninergic transmission in identified neurons of Hirudo (1993) Neuron, 10, pp. 559-572 
504 |a Burrell, B.D., Sahley, C.L., Muller, K.J., Non-associative learning and serotonin induce similar bi-directional changes in excitability of a neuron critical for learning in the medicinal leech (2001) J Neurosci, 21, pp. 1401-1412 
504 |a Carrela, M., Grassi, S., Magni, F., Two bidirectional nerve cord systems converging with electrical and chemical synapses on the Retzius cells of the leech Hirudo medicinalis (1981) Arch Ital Biol, 119, pp. 160-177 
504 |a Catarsi, S., Garcia-Gil, M., Traina, G., Brunelli, M., Seasonal variation of serotonin content and nonassociative learning of swim induction in the leech Hirudo medicinalis (1990) J Comp Physiol A Sens Neural Behav Physiol, 167, pp. 469-474 
504 |a Debski, E.A., Friesen, W.O., Intracellular stimulation of sensory cells elicits swimming activity in the medicinal leech (1987) J Comp Phvsiol A Sens Neural Behav Physiol, 160, pp. 447-457 
504 |a Eisenhart, F.J., Cacciatore, T.W., Kristan, W.B., A central pattern generator underlies crawling in the medicinal leech (2000) J Comp Physiol A Sens Neural Behav Physiol, 186, pp. 631-643 
504 |a Frank, E., Jansen, J.K.S., Rinvik, E., A multisomatic axon in the central nervous system of the leech (1975) J Comp Neurol, 159, pp. 1-14 
504 |a Harris-Warrick, R.M., Marder, E., Modulation of neural networks for behavior (1991) Annu Rev Neurosci, 14, pp. 39-57 
504 |a Hashemzadeh-Gargari, H., Friesen, W.O., Modulation of swimming activity in the medicinal leech by serotonin and octopamine (1989) Comp Biochem Physiol, 94, pp. 295-302 
504 |a Henderson, L.P., The role of 5-hydroxytryptamine as a transmitter between identified leech neurones in culture (1983) J Physiol, 339, pp. 309-324 
504 |a Iscla, I.R., Arini, P.D., Szczupak, L., Differential channeling of sensory stimuli onto a motor neuron in the leech (1999) J Comp Physiol, 184, pp. 233-241 
504 |a Jacobs, B.L., Fornal, C.A., 5-HT and motor control: A hypothesis (1993) Trends Neurosci, 16, pp. 346-352 
504 |a Jankowska, E., Spinal interneuronal systems: Identification, multifunctional character and reconfigurations in mammals (2001) J Physiol, 533, pp. 31-40 
504 |a Katz, P.S., Frost, W.N., Intrinsic neuromodulation in the Tritonia swim CPG: Serotonin mediates both neuromodulation and neurotransmission by the dorsal swim interneurons (1995) J Neurophysiol, 74, pp. 2281-2291 
504 |a Kristan, W.B., Nusbaum, M.P., The dual role of serotonin in leech swimming (1983) J Physiol, 78, pp. 743-747 
504 |a Lalley, P.M., Serotonergic and non-serotonergic responses of phrenic motoneurones to raphe stimulation in the cat (1986) J Physiol, 380, pp. 373-385 
504 |a Mangan, P.S., Cometa, A.K., Friesen, W.O., Modulation of swimming behavior in the medicinal leech. IV. Serotonin-induced alteration of synaptic interactions between neurons of the swim circuit (1994) J Comp Physiol A Sens Neural Behav Physiol, 175, pp. 723-736 
504 |a Mangan, P.S., Curran, G.A., Hurney, C.A., Friesen, W.O., Modulation of swimming behavior in the medicinal leech. III. Control of cellular properties in motor neurons by serotonin (1994) J Comp Physiol A Sens Neural Behav Physiol, 175, pp. 709-722 
504 |a Marder, E., Non-mammalian models for studying neural development and function (2002) Nature, 417, pp. 318-321 
504 |a Marín Burgin, A., Szczupak, L., Processing of sensory signals by a non-spiking neuron in the leech (2000) J Comp Physiol, 186, pp. 989-997 
504 |a Marín Burgin, A., Szczupak, L., Network interactions among sensory neurons (2003) J Comp Physiol A Sens Neural Behav Physiol, 189, pp. 59-67 
504 |a Marinesco, S., Carew, T.J., Serotonin release evoked by tail nerve stimulation in the CNS of Aplysia: Characterization and relationship to heterosynaptic plasticity (2002) J Neurosci, 22, pp. 2299-2312 
504 |a Mason, A., Kristan, W.B., Neuronal excitation, inhibition and modulation of leech longitudinal muscle (1982) J Comp Physiol, 146, pp. 527-536 
504 |a Matsushima, T., Grillner, S., Local serotonergic modulation of calcium-dependent potassium channel controls intersegmental coordination in the lamprey spinal cord (1992) J Neurophysiol, 67, pp. 1683-1890 
504 |a McAdoo, D.J., Coggeshall, R.E., Gas chromatographic-mass spectrometric analysis of biogenic amines in identified neurons and tissues of Hirudo medicinalis (1976) J Neurochem, 26, pp. 163-167 
504 |a Muller, K.J., Nicholls, J.G., Stent, G.S., (1981) Neurobiology of the Leech, , Cold Spring Harbor, NY: Cold Spring Harbor Laboratory 
504 |a Munsch, T., Schlue, W.R., Intracellular chloride activity and the effect of 5-hydroxytryptamine on the chloride conductance of leech Retzius neurons (1993) Eur J Neurosci, 5, pp. 1551-1557 
504 |a Popik, P.P., Preclinical pharmacology of citalopram (1999) J Clin Psychopharmacol, 19, pp. 4S-22S 
504 |a Ranganathan, R., Cannon, S.C., Horvitz, H.R., MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans (2000) Nature, 408, pp. 470-475 
504 |a Rela, L., Szczupak, L., Coactivation of motoneurons regulated by a network combining electrical and chemical synapses (2002) J Neurosci, 23, pp. 682-692 
504 |a Rodriguez, M.J., Iscla, I.R., Szczupak, L., Modulation of mechanosensory responses by motoneurons that regulate skin surface topology in the leech (2004) J Neurophysiol, 91, pp. 2366-2375 
504 |a Sahley, C.L., Modney, B.K., Boulis, N.M., Muller, K.J., The S cell: An interneuron essential for sensitization and full dishabituation of leech shortening (1994) J Neurosci, 14, pp. 6715-6721 
504 |a Sanchez-Armass, S., Merz, D.C., Drapeau, P., Distinct receptors, second messengers and conductances underlying the dual responses to serotonin in an identified leech neurone (1991) J Exp Biol, 155, pp. 531-547 
504 |a Sargent, P.B., Yau, K.-W., Nicholls, J.G., Extrasynaptic receptors on cell bodies of neurons in central nervous system of the leech (1977) J Neurophysiol, 40, pp. 446-452 
504 |a Schmidt, B.J., Jordan, L.M., The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord (2000) Brain Res Bull, 53, pp. 689-710 
504 |a Shaw, B.K., Kristan, W.B., The whole-body shortening reflex of the medicinal leech: Motor pattern, sensory basis, and interneuronal pathways (1995) J Comp Physiol A Sens Neural Behav Physiol, 177, pp. 667-681 
504 |a Stanford, S.C., Prozac: Panacea or puzzle? (1996) Trends Pharmacol Sci, 17, pp. 150-154 
504 |a Stuart, A.E., Physiological and morphological properties of motoneurones in the central nervous system of the leech (1970) J Physiol, 209, pp. 627-646 
504 |a Szczupak, L., Jordan, S., Kristan, W.B., Segment-specific modulation of the electrophysiological activity of leech Retzius neurons by acetylcholine (1993) J Exp Biol, 183, pp. 115-135 
504 |a Szczupak, L., Kristan, W.B., Widespread mechanosensory activation of the serotonergic system of the medicinal leech (1995) J Neurophysiol, 74, pp. 2614-2624 
504 |a Teshiba, T., Shamsian, A., Yashar, B., Yeh, S.-R., Edwards, D.H., Krasne, F.B., Dual and opposing modulatory effects of serotonin on crayfish lateral giant escape command neurons (2001) J Neurosci, 21, pp. 4523-4529 
504 |a Walker, R.J., Smith, P.A., The ionic mechanism for 5-hydroxytryptamine inhibition on Retzius cells of the leech Hirudo medicinalis (1973) Comp Biochem Physiol, 45 A, pp. 979-993 
504 |a Wessel, R., Kristan, W.B., Kleinfeld, D., Supralinear summation of synaptic inputs by an invertebrate neuron: Dendritic gain is mediated by an "inward rectifier" K+ current (1999) J Neurosci, 19, pp. 5875-5888 
504 |a Willard, A.L., Effects of serotonin on the generation of the motor program for swimming by the medicinal leech (1981) J Neurosci, 1, pp. 936-944 
504 |a Wittenberg, G., Kristan, W.B., Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. I. Motor output pattern (1992) J Neurophysiol, 68, pp. 1683-1707 
504 |a Wittenberg, G., Kristan, W.B., Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons (1992) J Neurophysiol, 68, pp. 1693-1707 
504 |a Wittenberg, G., Loer, C.M., Adamo, S.A., Kristan, W.B., Segmental specialization of neuronal connectivity in the leech (1990) J Comp Physiol A Sens Neural Behav Physiol, 167, pp. 453-459 
504 |a Wong, D.T., Bymaster, F.P., Engelman, E.A., Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: Twenty years since its first publication (1995) Life Sci, 57, pp. 411-441 
504 |a Wood, D.E., Nusbaum, M.P., Extracellular peptidase activity tunes motor pattern modulation (2002) J Neurosci, 22, pp. 4185-4195 
504 |a Yau, K.-W., Receptive fields, geometry and conduction block of sensory neurones in the central nervous system of the leech (1976) J Physiol, 263, pp. 513-538 
520 3 |a Serotonin [5-hydroxytryptamine (5-HT)] is a conspicuous neuromodulator of sensory-motor networks that affects a variety of neurons at different levels of the network hierarchy. Because of its many possible targets, it has been difficult to obtain a comprehensive picture of how 5-HT achieves its final modulatory output on any given network. Our hypothesis is that the profile of 5-HT actions is dictated by its pattern of release from endogenous sites. We tested this hypothesis in the leech nervous system by means of a selective serotonin reuptake blocker (SSRI), fluoxetine. Fluoxetine evoked barrages of synaptic potentials in identified sensory, motor, and interneurons. This effect was mimicked by the tricyclic antidepressants imipramine and clomipramine, and by the SSRI citalopram, with relative efficacies that matched their known relative selectivities for the 5-HT transporter. The synaptic responses evoked by fluoxetine in different neurons were temporally correlated, suggesting that they had a common origin. The profile of the synaptic responses matched that expected from the activation of the mechanosensory pressure cells, known to act by polysynaptic pathways. The results suggest that endogenous 5-HT acted on cord spanning interneurons. On the other hand, bath-applied 5-HT evoked an effect different from that of the SSRI. Taken together, the results evidenced that the pattern of action of the monoamine is dictated by the spatial distribution of the 5-HT release sites. Copyright © 2005 The American Physiological Society.  |l eng 
593 |a Depto. Fisiol., Biol. Molec. Y Cel., Fac. de Ciencias Exactas Y Naturales, Pabellón II, Buenos Aires, Argentina 
593 |a LFBM, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina 
690 1 0 |a CITALOPRAM 
690 1 0 |a CLOMIPRAMINE 
690 1 0 |a FLUOXETINE 
690 1 0 |a IMIPRAMINE 
690 1 0 |a SEROTONIN 
690 1 0 |a SEROTONIN UPTAKE INHIBITOR 
690 1 0 |a TRICYCLIC ANTIDEPRESSANT AGENT 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DATA ANALYSIS 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a GANGLION 
690 1 0 |a INTERNEURON 
690 1 0 |a LEECH 
690 1 0 |a MOTOR SYSTEM 
690 1 0 |a NERVE CELL 
690 1 0 |a NERVOUS SYSTEM 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a SENSORY SYSTEM 
690 1 0 |a SYNAPTIC POTENTIAL 
690 1 0 |a ACTION POTENTIALS 
690 1 0 |a ADRENERGIC UPTAKE INHIBITORS 
690 1 0 |a ANIMALS 
690 1 0 |a CITALOPRAM 
690 1 0 |a DRUG INTERACTIONS 
690 1 0 |a ELECTRIC STIMULATION 
690 1 0 |a FLUOXETINE 
690 1 0 |a GANGLIA, INVERTEBRATE 
690 1 0 |a IMIPRAMINE 
690 1 0 |a INTERNEURONS 
690 1 0 |a LEECHES 
690 1 0 |a MEMBRANE POTENTIALS 
690 1 0 |a NEURAL NETWORKS (COMPUTER) 
690 1 0 |a PAROXETINE 
690 1 0 |a SEROTONIN 
690 1 0 |a SEROTONIN UPTAKE INHIBITORS 
690 1 0 |a SYNAPSES 
700 1 |a Iscla, I.R. 
700 1 |a Szczupak, L. 
773 0 |d 2005  |g v. 93  |h pp. 2644-2655  |k n. 5  |p J. Neurophysiol.  |x 00223077  |w (AR-BaUEN)CENRE-5710  |t Journal of Neurophysiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-17644415335&doi=10.1152%2fjn.01181.2004&partnerID=40&md5=f463827ed4dbb0a861b1c6e94057601d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1152/jn.01181.2004  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00223077_v93_n5_p2644_Calvino  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223077_v93_n5_p2644_Calvino  |y Registro en la Biblioteca Digital 
961 |a paper_00223077_v93_n5_p2644_Calvino  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 65087