Key roles of hydrophobic rings of TM2 in gating of the α9α10 nicotinic cholinergic receptor

We have performed a systematic mutagenesis of three hydrophobic rings (17′, 13′ and 9′) within transmembrane region (TM) 2 of the α9α10 nicotinic cholinergic receptor (nAChR) to a hydrophilic (threonine) residue and compared the properties of mutant receptors reconstituted in Xenopus laevis oocytes....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Plazas, P.V
Otros Autores: De Rosa, M.J, Gomez-Casati, M.E, Verbitsky, M., Weisstaub, N., Katz, E., Bouzat, C., Elgoyhen, A.B
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2005
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13349caa a22013817a 4500
001 PAPER-4019
003 AR-BaUEN
005 20230518203331.0
008 190411s2005 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-23744483520 
024 7 |2 cas  |a tropisetron, 89565-68-4; Acetylcholine, 51-84-3; Calcium, 7440-70-2; Cholinergic Agents; Chrna9 protein, rat; Protein Subunits; Receptors, Nicotinic; Recombinant Proteins; alpha10 acetylcholine receptor, rat 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a BJPCB 
100 1 |a Plazas, P.V. 
245 1 0 |a Key roles of hydrophobic rings of TM2 in gating of the α9α10 nicotinic cholinergic receptor 
260 |c 2005 
270 1 0 |m Elgoyhen, A.B.; Institute de Investigaciones en Ingenieria Genetica y Biologia Molecular (INGEBI), CONICET-UBA, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina; email: elgoyhen@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Akabas, M.H., Kaufmann, C., Archdeacon, P., Karlin, A., Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit (1994) Neuron, 13, pp. 919-927 
504 |a Arellano, R.O., Woodward, R.M., Miledi, R., A monovalent cationic conductance that is blocked by extracellular divalent cations in Xenopus oocytes (1995) J. Physiol. (London), 484, pp. 593-604 
504 |a Bertrand, D., Devillers-Thiery, A., Revah, F., Galzi, J.L., Hussy, N., Mulle, C., Bertrand, S., Changeux, J.P., Unconventional pharmacology of a neuronal receptor mutated in the channel domain (1992) Proc. Natl. Acad. Sci. U.S.A., 89, pp. 1261-1265 
504 |a Bertrand, D., Galzi, J.L., Devillers-Thiery, A., Bertrand, S., Changeux, J.P., Stratification of the channel domain in neurotransmitter receptors (1993) Curr. Opin. Cell Biol., 5, pp. 688-693 
504 |a Bertrand, S., Devillers-Thiery, A., Palma, E., Buisson, B., Edelstein, S.J., Corringer, P.J., Changeux, J.P., Bertrand, D., Paradoxical allosteric effects of competitive inhibitors on neuronal alpha7 nicotinic receptor mutants (1997) NeuroReport, 8, pp. 3591-3596 
504 |a Bouzat, C., Bren, N., Sine, S., Structural basis of the different gating kinetics of fetal and adult acetylcholine receptors (1994) Neuron, 13, pp. 1395-1402 
504 |a Bouzat, C., Gumilar, F., Del Carmen Esandi, M., Sine, S.M., Subunit-selective contribution to channel gating of the M4 domain of the nicotinic receptor (2002) Biophys. J., 82, pp. 1920-1929 
504 |a Chang, Y., Weiss, D.S., Substitutions of the highly conserved M2 leucine create spontaneously opening rho1 gamma-aminobutyric acid receptors (1998) Mol. Pharmacol., 53, pp. 511-523 
504 |a Chang, Y., Weiss, D.S., Allosteric activation mechanism of the alpha1beta2gamma2 gamma-aminobutyric acid type a receptor revealed by mutation of the conserved M2 leucine (1999) Biophys. J., 77, pp. 2542-2551 
504 |a Colquhoun, D., Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors (1998) Br. J. Pharmacol., 125, pp. 924-947 
504 |a Corringer, P.J., Bertrand, S., Galzi, J.L., Devillers-Thiery, A., Changeux, J.P., Bertrand, D., Hussy, N., Mutational analysis of the charge selectivity filter of the alpha7 nicotinic acetylcholine receptor (1999) Neuron, 22, pp. 831-843 
504 |a Cymes, G.D., Grosman, C., Auerbach, A., Structure of the transition state of gating in the acetylcholine receptor channel pore: A phi-value analysis (2002) Biochemistry, 41, pp. 5548-5555 
504 |a Ebihara, L., Xenopus connexin38 forms hemi-gap-junctional channels in the nonjunctional plasma membrane of Xenopus oocytes (1996) Biophys. J., 71, pp. 742-748 
504 |a Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E., Heinemann, S., Alpha9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells (1994) Cell, 79, pp. 705-715 
504 |a Elgoyhen, A.B., Vetter, D., Katz, E., Rothlin, C., Heinemann, S., Boulter, J., Alpha 10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 3501-3506 
504 |a England, P.M., Zhang, Y., Dougherty, D.A., Lester, H.A., Backbone mutations in transmembrane domains of a ligand-gated ion channel: Implications for the mechanism of gating (1999) Cell, 96, pp. 89-98 
504 |a Filatov, G.N., White, M.M., The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating (1995) Mol. Pharmacol., 48, pp. 379-384 
504 |a Galzi, J.L., Bertrand, S., Corringer, P.J., Changeux, J.P., Bertrand, D., Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor (1996) EMBO J., 15, pp. 5824-5832 
504 |a Galzi, J.L., Devillers-Thiery, A., Hussy, N., Bertrand, S., Changeux, J.P., Bertrand, D., Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic (1992) Nature, 359, pp. 500-505 
504 |a Galzi, J.L., Edelstein, S.J., Changeux, J., The multiple phenotypes of allosteric receptor mutants (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 1853-1858 
504 |a Grigoriev, N.G., Spafford, J.D., Spencer, A.N., The effects of level of expression of a jellyfish Shaker potassium channel: A positive potassium feedback mechanism (1999) J. Physiol. (London), 517 (PART 1), pp. 25-33 
504 |a Hamill, O.P., Sakmann, B., Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells (1981) Nature, 294, pp. 462-464 
504 |a Karlin, A., Akabas, M., Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins (1995) Neuron, 15, pp. 1231-1244 
504 |a Katz, E., Verbitsky, M., Rothlin, C., Vetter, D., Heinemann, S., Elgoyhen, A., High calcium permeability and calcium block of the α9 nicotinic acetylcholine receptor (2000) Hearing Res., 141, pp. 117-128 
504 |a Labarca, C., Nowak, M.W., Zhang, H., Tang, L., Deshpande, P., Lester, H.A., Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors (1995) Nature, 376, pp. 514-516 
504 |a Lenovere, N., Changeux, J., Molecular evolution of the nicotinic acetylcholine receptor: An example of multigene family in excitable cells (1995) J. Molec. Evol., 40, pp. 155-172 
504 |a Lenovere, N., Corringer, P.J., Changeux, J.P., The diversity of subunit composition in nAChRs: Evolutionary origins, physiologic and pharmacologic consequences (2002) J. Neurobiol., 53, pp. 447-456 
504 |a Miyazawa, A., Fujiyoshi, Y., Unwin, N., Structure and gating mechanism of the acetylcholine receptor pore (2003) Nature, 424, pp. 949-955 
504 |a Panicker, S., Cruz, H., Arrabit, C., Slesinger, P.A., Evidence for a centrally located gate in the pore of a serotonin-gated ion channel (2002) J. Neurosci., 22, pp. 1629-1639 
504 |a Papke, R.L., Bencherif, M., Lippiello, P., An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the a7 subtype (1996) Neurosci. Letters, 213, pp. 201-204 
504 |a Rayes, D., Derosa, M., Bartos, M., Bouzat, C., Molecular basis of the differential sensitivity of nematode and mammalian muscle to the anthelmintic agent levamisole (2004) J. Biol. Chem., 279, pp. 36372-36381 
504 |a Revah, F., Bertrand, D., Galzi, J., Devillers-Thiéry, A., Mulle, C., Hussy, N., Bertrand, S., Changeux, J., Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor (1991) Nature, 353, pp. 846-848 
504 |a Taglietti, V., Toselli, M., A study of stretch-activated channels in the membrane of frog oocytes: Interactions with Ca 2+ ions (1988) J. Physiol. (London), 407, pp. 311-328 
504 |a Verbitsky, M., Rothlin, C., Katz, E., Elgoyhen, A.B., Mixed nicotinic-muscarinic properties of the a9 nicotinic cholinergic receptor (2000) Neuropharmacology, 39, pp. 2515-2524 
504 |a Weisstaub, N., Vetter, D., Elgoyhen, A., Katz, E., The alpha9/alpha10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations (2002) Hearing Res., 167, pp. 122-135 
504 |a Wilson, G.G., Karlin, A., The location of the gate in the acetylcholine receptor channel (1998) Neuron, 20, pp. 1269-1281 
520 3 |a We have performed a systematic mutagenesis of three hydrophobic rings (17′, 13′ and 9′) within transmembrane region (TM) 2 of the α9α10 nicotinic cholinergic receptor (nAChR) to a hydrophilic (threonine) residue and compared the properties of mutant receptors reconstituted in Xenopus laevis oocytes. Phenotypic changes in α9α10 mutant receptors were evidenced by a decrease in the desensitization rate, an increase in both the EC 50 for ACh as well as the efficacy of partial agonists and the reduction of the allosteric modulation by extracellular Ca 2+. Mutated receptors exhibited spontaneous openings and, at the single-channel level, an increased apparent mean open time with no major changes in channel conductance, thus suggesting an increase in gating of the channel as the underlying mechanism. Overall, the degrees of the phenotypes of mutant receptors were more overt in the case of the centrally located V13′T mutant. Based on the atomic model of the pore of the electric organ of the Torpedo ray, we can propose that the interactions of side chains at positions 13′ and 9′ are key ones in creating an energetic barrier to ion permeation. In spite of the fact that the roles of the TM2 residues are mostly conserved in the distant α9α10 member of the nAChR family, their mechanistic contributions to channel gating show significant differences when compared to other nAChRs. These differences might be originated from slight differential intramolecular rearrangements during gating for the different receptors and might lead each nAChR to be in tune with their physiological roles. © 2005 Nature Publishing Group All rights reserved.  |l eng 
593 |a Institute de Investigaciones en Ingenieria Genetica y Biologia Molecular (INGEBI), CONICET-UBA, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina 
593 |a Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Bahía Blanca F-8000FWB, Argentina 
593 |a Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina 
593 |a Columbia Genome Center, Columbia University, 1150 St Nicholas Ave., New York, NY 10032, United States 
593 |a Columbia University, 1051 Riverside Drive, New York, NY 10032, United States 
690 1 0 |a ACETYLCHOLINE 
690 1 0 |a CHANNEL GATING 
690 1 0 |a CYS-LOOP RECEPTORS 
690 1 0 |a IONOTROPIC RECEPTORS 
690 1 0 |a NICOTINIC RECEPTORS 
690 1 0 |a NICOTINIC RECEPTOR 
690 1 0 |a PARTIAL AGONIST 
690 1 0 |a TROPISETRON 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ARTICLE 
690 1 0 |a CHANNEL GATING 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ELECTRIC ORGAN 
690 1 0 |a EXTRACELLULAR CALCIUM 
690 1 0 |a HYDROPHILICITY 
690 1 0 |a HYDROPHOBICITY 
690 1 0 |a ION TRANSPORT 
690 1 0 |a MEMBRANE POTENTIAL 
690 1 0 |a NONHUMAN 
690 1 0 |a PHENOTYPE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a RING OPENING 
690 1 0 |a XENOPUS LAEVIS 
690 1 0 |a ACETYLCHOLINE 
690 1 0 |a ALLOSTERIC REGULATION 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a ANIMALS 
690 1 0 |a CALCIUM 
690 1 0 |a CHOLINERGIC AGENTS 
690 1 0 |a DOSE-RESPONSE RELATIONSHIP, DRUG 
690 1 0 |a ION CHANNEL GATING 
690 1 0 |a MEMBRANE POTENTIALS 
690 1 0 |a MOLECULAR SEQUENCE DATA 
690 1 0 |a MUTAGENESIS, SITE-DIRECTED 
690 1 0 |a OOCYTES 
690 1 0 |a PATCH-CLAMP TECHNIQUES 
690 1 0 |a PHENOTYPE 
690 1 0 |a PROTEIN SUBUNITS 
690 1 0 |a RECEPTORS, NICOTINIC 
690 1 0 |a RECOMBINANT PROTEINS 
690 1 0 |a SEQUENCE ALIGNMENT 
690 1 0 |a TRANSFECTION 
690 1 0 |a XENOPUS LAEVIS 
700 1 |a De Rosa, M.J. 
700 1 |a Gomez-Casati, M.E. 
700 1 |a Verbitsky, M. 
700 1 |a Weisstaub, N. 
700 1 |a Katz, E. 
700 1 |a Bouzat, C. 
700 1 |a Elgoyhen, A.B. 
773 0 |d 2005  |g v. 145  |h pp. 963-974  |k n. 7  |p Br. J. Pharmacol.  |x 00071188  |w (AR-BaUEN)CENRE-9552  |t British Journal of Pharmacology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-23744483520&doi=10.1038%2fsj.bjp.0706224&partnerID=40&md5=769c38b40a37760647b5c09e52dbbf3b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1038/sj.bjp.0706224  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00071188_v145_n7_p963_Plazas  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00071188_v145_n7_p963_Plazas  |y Registro en la Biblioteca Digital 
961 |a paper_00071188_v145_n7_p963_Plazas  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 64972