Calcium gradients and exocytosis in bovine adrenal chromaffin cells

The relationship between the localized Ca2+ concentration and depolarization-induced exocytosis was studied in patch-clamped adrenal chromaffin cells using pulsed-laser Ca2+ imaging and membrane capacitance measurements. Short depolarizing voltage steps induced Ca2+ gradients and small "synchro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marengo, F.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2005
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13868caa a22012137a 4500
001 PAPER-4016
003 AR-BaUEN
005 20230518203331.0
008 190411s2005 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-23844480034 
024 7 |2 cas  |a calcium ion, 14127-61-8 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CECAD 
100 1 |a Marengo, F.D. 
245 1 0 |a Calcium gradients and exocytosis in bovine adrenal chromaffin cells 
260 |b Elsevier Ltd  |c 2005 
270 1 0 |m Marengo, F.D.; Department of Physiology, UCLA, School of Medicine, Los Angeles, CA 90095, United States; email: fernando@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Kim, K.T., Westhead, E.W., Cellular responses to Ca2+ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca2+ and secretion from bovine chromaffin cells (1989) Proc. Natl. Acad. Sci. U.S.A., 86, pp. 9881-9885 
504 |a O'Sullivan, A.J., Cheek, T.R., Moreton, R.B., Berridge, M.J., Burgoyne, R.D., Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2 (1989) EMBO J., 8, pp. 401-411 
504 |a Augustine, G.J., Neher, E., Calcium requirements for secretion in bovine chromaffin cells (1992) J. Physiol., 450, pp. 247-271 
504 |a Neher, E., Zucker, R.S., Multiple calcium-dependent processes related to secretion in bovine chromaffin cells (1993) Neuron, 10, pp. 21-30 
504 |a Neher, E., Agustine, G.J., Calcium gradients and buffers in bovine chromaffin cells (1992) J. Physiol., 450, pp. 273-301 
504 |a Monck, J.R., Robinson, I.M., Escobar, A.L., Vergara, J.L., Fernandez, J.M., Pulsed laser imaging of rapid Ca2+ gradients in excitable cells (1994) Biophys. J., 67, pp. 505-514 
504 |a Marengo, F.D., Monck, J.R., Development and dissipation of Ca2+ gradients in adrenal chromaffin cells (2000) Biophys. J., 79, pp. 1800-1820 
504 |a Seward, E.P., Nowycky, M.C., Kinetics of stimulus-coupled secretion in dialyzed bovine chromaffin cells in response to trains of depolarizing pulses (1996) J. Neurosci., 16, pp. 553-562 
504 |a Neher, E., Vesicle pools and Ca2+ microdomains: New tools for understanding their roles in neurotransmitter release (1998) Neuron, 20, pp. 389-399 
504 |a Engisch, K.L., Nowycky, M.C., Compensatory and excess retrieval: Two types of endocytosis following single step depolarizations in bovine adrenal chromaffin cells (1998) J. Physiol., 506, pp. 591-608 
504 |a Seward, E.P., Chernevskaya, N.I., Nowycky, M.C., Ba2+ ions evoke two kinetically distinct patterns of exocytosis in chromaffin cells, but not in neurohypophysial nerve terminals (1996) J. Neurosci., 16, pp. 1370-1379 
504 |a DiGregorio, D.A., Vergara, J.L., Localized detection of action potential-induced presynaptic calcium transients at a Xenopus neuromuscular junction (1997) J. Physiol., 505 (PART 3), pp. 585-592 
504 |a Escobar, A.L., Monck, J.R., Fernandez, J.M., Vergara, J.L., Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres (1994) Nature, 367, pp. 739-741 
504 |a Hernández-Cruz, A., Sala, F., Adams, P.R., Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron (1990) Science, 247, pp. 858-862 
504 |a Connor, J.A., Nikolakapoulou, G., Calcium diffusion and buffering in nerve cytoplasm (1982) Lect. Math. Life Sci., 15, pp. 79-101 
504 |a Simon, S.M., Llinás, R.R., Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release (1985) Biophys. J., 48, pp. 485-498 
504 |a Sala, F., Hernández-Cruz, A., Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties (1990) Biophys. J., 57, pp. 313-324 
504 |a Nowycky, M.C., Pinter, M.J., Time courses of calcium and calcium-bound buffers following calcium influx in a model cell (1993) Biophys. J., 64, pp. 77-91 
504 |a Fink, C.C., Slepchenko, B., Moraru, I.I., Watras, J., Schaff, J.C., Loew, L.M., An image-based model of calcium waves in differentiated neuroblastoma cells (2000) Biophys. J., 79, pp. 163-183 
504 |a Marengo, F.D., Monck, J.R., Spatial distribution of Ca2+ signals during repetitive depolarizing stimuli in adrenal chromafin cells (2003) Biophys. J., 85, pp. 3397-3417 
504 |a Horrigan, F.T., Bookman, R.J., Releasable pools and the kinetics of expcytosis in adrenal chromaffin cells (1994) Neuron, 13, pp. 1119-1129 
504 |a Voets, T., Neher, E., Moser, T., Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices (1999) Neuron, 23, pp. 607-615 
504 |a Engisch, K.L., Chernevskaya, N.I., Nowycky, M.C., Short-term changes in the Ca2+-exocytosis relationship during repetitive pulse protocols in bovine adrenal chromaffin cells (1997) J. Neurosci., 17, pp. 9010-9025 
504 |a Seward, E.P., Chernevskaya, N.I., Nowycky, M.C., Exocytosis in peptidergic nerve terminals exhibits two calcium-sensitive phases during pulsatile calcium entry (1995) J. Neurosci., 15, pp. 3390-3399 
504 |a Thomas, P., Surprenant, A., Almers, W., Cytosolic Ca2+, exocytosis, and endocytosis in single melanotrophs of the rat pituitary (1990) Neuron, 5, pp. 723-733 
504 |a Becherer, U., Moser, T., Stuhmer, W., Oheim, M., Calcium regulates exocytosis at the level of single vesicles (2003) Nat. Neurosci., 6, pp. 846-853 
504 |a Heinemann, C., Chow, R.H., Neher, E., Zucker, R.S., Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+ (1994) Biophys. J., 67, pp. 2546-2557 
504 |a Burgoyne, R.D., Morgan, A., O'Sullivan, A.J., A major role for protein kinase C in calcium-activated exocytosis in permeabilised adrenal chromaffin cells (1988) FEBS Lett., 238, pp. 151-155 
504 |a Minta, A., Kao, J.P., Tsien, R.Y., Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores (1989) J. Biol. Chem., 264 (14), pp. 8171-8178 
504 |a Neher, E., Correction for liquid junction potentials in patch clamp experiments (1992) Methods Enzymol., 207, pp. 123-131 
504 |a Joshi, C., Fernández, J.M., An analysis of the phase detector technique used to study exocytosis and endocytosis (1988) Biophys. J., 53, pp. 885-892. , Capacitance Mesurements 
504 |a Fidler, N., Fernández, J.M., Phase tracking: An improved phase detection technique for cell membrane capacitance measurements (1989) Biophys. J., 56, pp. 1153-1162 
504 |a Kinosita Jr., K., Ashikawa, I., Hibino, M., Submicrosecond imaging under a pulsed-laser fluorescence microscope (1988) SPIE, 909, pp. 271-277 
504 |a Bright, G.R., Fisher, G.W., Rogowska, J., Taylor, D.L., Fluorescence ratio imaging microscopy (1989) Methods Cell Biol., 30, pp. 157-192 
504 |a Grynkiewicz, G., Poenie, M., Tsien, R.Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties (1985) J. Biol. Chem., 260, pp. 3440-3450 
504 |a Escobar, A.L., Velez, P., Kim, A.M., Cifuentes, F., Fill, M., Vergara, J.L., Kinetic properties of DM-nitrophen and calcium indicators: Rapid transient response to flash photolysis (1997) Pflugers Arch., 434, pp. 615-631 
504 |a Heinemann, C., von Ruden, L., Chow, R.H., Neher, E., A two-step model of secretion control in neuroendocrine cells (1993) Pflugers Arch., 424, pp. 105-112 
504 |a Klingauf, J., Neher, E., Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells (1997) Biophys. J., 72, pp. 674-690 
504 |a Bertram, R., Sherman, A., Stanley, E.F., Single-domain/bound calcium hypothesis of transmitter release and facilitation (1996) J. Neurophysiol., 75, pp. 1919-1931 
504 |a Moser, T., Neher, E., Estimation of mean exocytic vesicle capacitance in mouse adrenal chromaffin cells (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 6735-6740 
504 |a Gillis, K.D., Mossner, R., Neher, E., Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules (1996) Neuron, 16, pp. 1209-1220 
504 |a Moser, T., Neher, E., Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices (1997) J. Neurosci., 17, pp. 2314-2323 
504 |a Carmichael, S.W., Morphology and innervation of adrenal medullar (1986) Stimulus-secretion Coupling, pp. 1-29. , K. Rosenheck P. Lelkes (Eds.), CRC Boca Raton, FL 
504 |a Yang, Y., Udayasankar, S., Dunning, J., Cheng, P., Gillis, K.D., A highly Ca sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 17060-17065 
504 |a Xu, J., Xu, Y., Ellis-Davies, G., Agustine, G., Tse, F.W., Differential regulation of exocytosis by alpha and beta-SNAPS (2002) J. Neurosci., 22, pp. 53-61 
504 |a Xu, T., Ashery, U., Burgoyne, R.D., Neher, E., Early requirement for alpha-SNAP and NSF in the secretory cascade in chromaffin cells (1999) EMBO J., 18, pp. 3293-3304 
504 |a Segura, J., Gil, A., Soria, B., Modeling study of exocytosis in neuroendocrine cells: Influence of the geometrical parameters (2000) Biophys. J., 79, pp. 1771-1786 
504 |a Robinson, I.M., Finnegan, J.M., Monck, J.R., Wightman, R.M., Fernandez, J.M., Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells (1995) Proc. Natl. Acad. Sci. U.S.A., 92, pp. 2474-2478 
520 3 |a The relationship between the localized Ca2+ concentration and depolarization-induced exocytosis was studied in patch-clamped adrenal chromaffin cells using pulsed-laser Ca2+ imaging and membrane capacitance measurements. Short depolarizing voltage steps induced Ca2+ gradients and small "synchronous" increases in capacitance during the pulses. Longer pulses increased the capacitance changes, which saturated at 16 fF, suggesting the presence of a small immediately releasable pool of fusion-ready vesicles. A Hill plot of the capacitance changes versus the estimated Ca2+ concentration in a thin (100 nm) shell beneath the membrane gave n = 2.3 and Kd = 1.4 μM. Repetitive stimulation elicited a more complex pattern of exocytosis: early pulses induced synchronous capacitance increases, but after five or more pulses there was facilitation of the synchronous responses and gradual increases in capacitance continued between pulses (asynchronous exocytosis) as the steep submembrane Ca2+ gradients collapsed. Raising the pipette Ca2+ concentration led to early facilitation of the synchronous response and early appearance of asynchronous exocytosis. We used this data to develop a kinetic model of depolarization-induced exocytosis, where Ca2+-dependent fusion of vesicles occurs from a small immediately releasable pool with an affinity of 1-2 μM and vesicles are mobilized to this pool in a Ca2+-dependent manner. © 2005 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: National Institutes of Health, PICT 05-11661 
536 |a Detalles de la financiación: The work presented in this manuscript was mostly carried out in Dr. Jonathan R. Monck's laboratory, Department of Physiology, UCLA. I specially thank Dr. Jonathan R. Monck for his intellectual and material contribution, which was indispensable for the completion of this work. I also thank Dr. Bernard Ribalet and Dr. Lidia Szczupak for the critical reading of the manuscript. This work was supported by grant GM54340 (to Dr. J. Monck) from the National Institutes of Health (USA) and by grant PICT 05-11661 (to Dr. F. Marengo) from SCYT-ANPCYT (Argentina). 
593 |a Department of Physiology, UCLA, School of Medicine, Los Angeles, CA 90095, United States 
593 |a Laboratorio de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II - 2o Piso, Buenos Aires 1428, Argentina 
690 1 0 |a CA2+ SIGNALLING 
690 1 0 |a IMMEDIATELY RELEASABLE POOL 
690 1 0 |a PULSED-LASER IMAGING 
690 1 0 |a SECRETION 
690 1 0 |a CALCIUM ION 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ARTICLE 
690 1 0 |a CALCIUM CELL LEVEL 
690 1 0 |a CALCIUM CURRENT 
690 1 0 |a CALCIUM SIGNALING 
690 1 0 |a CALCIUM TRANSPORT 
690 1 0 |a CELL KINETICS 
690 1 0 |a CELL MEMBRANE DEPOLARIZATION 
690 1 0 |a CELL MEMBRANE POTENTIAL 
690 1 0 |a CELLULAR DISTRIBUTION 
690 1 0 |a CHROMAFFIN CELL 
690 1 0 |a CONCENTRATION (PARAMETERS) 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a COW 
690 1 0 |a ELECTRIC CAPACITANCE 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a NONHUMAN 
690 1 0 |a PATCH CLAMP 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a BOVINAE 
773 0 |d Elsevier Ltd, 2005  |g v. 38  |h pp. 87-99  |k n. 2  |p Cell Calcium  |x 01434160  |w (AR-BaUEN)CENRE-4124  |t Cell Calcium 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-23844480034&doi=10.1016%2fj.ceca.2005.06.006&partnerID=40&md5=36589a655eb0de437aaa8d1637c8af00  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ceca.2005.06.006  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01434160_v38_n2_p87_Marengo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01434160_v38_n2_p87_Marengo  |y Registro en la Biblioteca Digital 
961 |a paper_01434160_v38_n2_p87_Marengo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 64969