Renormalized stress tensor for trans-Planckian cosmology

Finite expressions for the mean value of the stress tensor corresponding to a scalar field with a generalized dispersion relation in a Friedmann-Robertson- Walker universe are obtained using adiabatic renormalization. Formally divergent integrals are evaluated by means of dimensional regularization....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Nacir, D.L
Otros Autores: Mazzitelli, F.D, Simeone, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2005
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09647caa a22010217a 4500
001 PAPER-3777
003 AR-BaUEN
005 20230518203314.0
008 190411s2005 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-29744439241 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PRVDA 
100 1 |a Nacir, D.L. 
245 1 0 |a Renormalized stress tensor for trans-Planckian cosmology 
260 |c 2005 
270 1 0 |m Nacir, D.L.; Departamento de Física Juan José Giambiagi, Facultad de Ciencias Exactas Y Naturales, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina; email: dnacir@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Linde, A., (1990) Particle Physics and Inflationary Cosmology, , Harwood, Academic, Chur, Switzerland 
504 |a Kolb, E.W., Turner, M.S., (1990) The Early Universe, , Addison-Wesley, Reading, MA 
504 |a Liddle, A., Lyth, D., (2000) Cosmological Inflation and Large Scale Structure, , Cambridge University Press, Cambridge, England 
504 |a Brandenberger, R.H., hep-ph/9910410;; Brandenberger, R.H., Martin, J., (2001) Mod. Phys. Lett. a, 16, p. 999. , MPLAEQ 0217-7323 10.1142/S0217732301004170 
504 |a Martin, J., Brandenberger, R.H., (2001) Phys. Rev. D, 63, p. 123501. , PRVDAQ 0556-2821 10.1103/PhysRevD.63.123501 
504 |a Niemeyer, J.C., (2001) Phys. Rev. D, 63, p. 123502. , PRVDAQ 0556-2821 10.1103/PhysRevD.63.123502 
504 |a Easther, R., Greene, B.R., Kinney, W.H., Shiu, G., (2003) Phys. Rev. D, 67, p. 063508. , PRVDAQ 0556-2821 10.1103/PhysRevD.67.063508 
504 |a Shiu, G., Wasserman, I., (2002) Phys. Lett. B, 536, p. 1. , PYLBAJ 0370-2693 10.1016/S0370-2693(02)01835-X 
504 |a Easther, R., Greene, B.R., Kinney, W.H., Shiu, G., (2002) Phys. Rev. D, 66, p. 023518. , PRVDAQ 0556-2821 10.1103/PhysRevD.66.023518 
504 |a Niemeyer, J.C., Parentani, R., (2001) Phys. Rev. D, 64, pp. 101301R. , PRVDAQ 0556-2821 10.1103/PhysRevD.64.101301 
504 |a Kempf, A., Niemeyer, J.C., (2001) Phys. Rev. D, 64, p. 103501. , PRVDAQ 0556-2821 10.1103/PhysRevD.64.103501 
504 |a Hui, L., Kinney, W.H., (2002) Phys. Rev. D, 65, p. 103507. , PRVDAQ 0556-2821 10.1103/PhysRevD.65.103507 
504 |a Shankaranarayanan, S., (2003) Classical Quantum Gravity, 20, p. 75. , CQGRDG 0264-9381 10.1088/0264-9381/20/1/305 
504 |a Goldstein, K., Lowe, D.A., (2003) Phys. Rev. D, 67, p. 063502. , PRVDAQ 0556-2821 10.1103/PhysRevD.67.063502 
504 |a Bozza, V., Giovannini, M., Veneziano, G., J. Cosmol. Astropart. Phys., 2003 (5), p. 001. , 1475-7516 10.1088/1475-7516/2003/05/001 
504 |a Alberghi, G.L., Casadio, R., Tronconi, A., (2004) Phys. Lett. B, 579, p. 1. , PYLBAJ 0370-2693 10.1016/j.physletb.2003.11.004 
504 |a Danielsson, U.H., (2002) Phys. Rev. D, 66, p. 023511. , PRVDAQ 0556-2821 10.1103/PhysRevD.66.023511 
504 |a Danielsson, U.H., J. High Energy Phys., 2002 (7), p. 040. , JHEPFG 1029-8479 10.1088/1126-6708/2002/07/040 
504 |a Burgess, C.P., Cline, J.M., Lemieux, F., Holman, R., J. High Energy Phys., 2003 (2), p. 048. , JHEPFG 1029-8479 10.1088/1126-6708/2003/02/048 
504 |a Collins, H., Martin, M.R., (2004) Phys. Rev. D, 70, p. 084021. , PRVDAQ 0556-2821 10.1103/PhysRevD.70.084021 
504 |a Easther, R., Kinney, W.H., Peiris, H., J. Cosmol. Astropart. Phys., 2005 (5), p. 009. , 1475-7516 10.1088/1475-7516/2005/05/009 
504 |a Gambini, R., Pullin, J., (1999) Phys. Rev. D, 59, p. 124021. , PRVDAQ 0556-2821 10.1103/PhysRevD.59.124021 
504 |a Alfaro, J., Morales-Tecotl, H.A., Urrutia, L.F., (2000) Phys. Rev. Lett., 84, p. 2318. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.2318 
504 |a Dalvit, D.A.R., Mazzitelli, F.D., Molina-Paris, C., (2001) Phys. Rev. D, 63, p. 084023. , PRVDAQ 0556-2821 10.1103/PhysRevD.63.084023 
504 |a Starobinsky, A.A., (2001) Pis'Ma Zh. Eksp. Teor. Fiz., 73, p. 415. , PZETAB 0370-274X 
504 |a Starobinsky, A.A., (2001) JETP Lett., 73, p. 371. , JTPLA2 0021-3640 10.1134/1.1381588 
504 |a Schalm, K., Shiu, G., Van Der Schaar, J.P., J. High Energy Phys., 2004 (4), p. 076. , JHEPFG 1029-8479 10.1088/1126-6708/2004/04/076 
504 |a Collins, H., Holman, R., (2005) Phys. Rev. D, 71, p. 085009. , PRVDAQ 0556-2821 10.1103/PhysRevD.71.085009 
504 |a Porrati, M., (2004) Phys. Lett. B, 596, p. 306. , PYLBAJ 0370-2693 10.1016/j.physletb.2004.06.090 
504 |a Kempf, A., (2001) Phys. Rev. D, 63, p. 083514. , PRVDAQ 0556-2821 10.1103/PhysRevD.63.083514 
504 |a Chu, C.S., Greene, B.R., Shiu, G., (2001) Mod. Phys. Lett. a, 16, p. 2231. , MPLAEQ 0217-7323 10.1142/S0217732301005680 
504 |a Easther, R., (2001) Phys. Rev. D, 64, p. 103502. , PRVDAQ 0556-2821 10.1103/PhysRevD.64.103502 
504 |a Brandenberger, R., Ho, P.M., (2002) Phys. Rev. D, 66, p. 023517. , PRVDAQ 0556-2821 10.1103/PhysRevD.66.023517 
504 |a Tanaka, T., astro-ph/0012431; Starobinsky, A.A., Tkachev, I.I., (2002) Pis'Ma Zh. Eksp. Teor. Fiz., 76, p. 291. , PZETAB 0370-274X 
504 |a Starobinsky, A.A., Tkachev, I.I., (2002) JETP Lett., 76, p. 235. , JTPLA2 0021-3640 10.1134/1.1520612 
504 |a Kaloper, N., Kleban, M., Lawrence, A., Shenker, S., Susskind, L., J. High Energy Phys., 2002 (11), p. 037. , JHEPFG 1029-8479 10.1088/1126-6708/2002/11/037 
504 |a Brandenberger, R.H., Martin, J., (2005) Phys. Rev. D, 71, p. 023504. , PRVDAQ 0556-2821 10.1103/PhysRevD.71.023504 
504 |a Lemoine, M., Lubo, M., Martin, J., Uzan, J.P., (2002) Phys. Rev. D, 65, p. 023510. , PRVDAQ 0556-2821 10.1103/PhysRevD.65.023510 
504 |a Wald, R.M., (1994) Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, , University of Chicago, Chicago 
504 |a Birrell, N.D., Davies, P.C.W., (1982) Quantum Fields in Curved Space, , Cambridge University Press, Cambridge, England 
504 |a Fulling, S.M., (1989) Aspects of Quantum Field Theory in Curved Spacetime, , Cambridge University Press, Cambridge, England 
504 |a Christensen, S.M., (1976) Phys. Rev. D, 14, p. 2490. , PRVDAQ 0556-2821 10.1103/PhysRevD.14.2490 
504 |a Christensen, S.M., (1978) Phys. Rev. D, 17, p. 946. , PRVDAQ 0556-2821 10.1103/PhysRevD.17.946 
504 |a Zeldovich, Ya.B., Starobinsky, A.A., (1972) Sov. Phys. JETP, 34, p. 1159. , SPHJAR 0038-5646 
504 |a Parker, L., Fulling, S.A., (1974) Phys. Rev. D, 9, p. 341. , PRVDAQ 0556-2821 10.1103/PhysRevD.9.341 
504 |a Fulling, S.A., Parker, L., (1974) Ann. Phys. (N.Y.), 87, p. 176. , APNYA6 0003-4916 10.1016/0003-4916(74)90451-5 
504 |a Fulling, S.A., Parker, L., Hu, B.L., (1974) Phys. Rev. D, 10, p. 3905. , PRVDAQ 0556-2821 10.1103/PhysRevD.10.3905 
504 |a Bunch, T.S., (1980) J. Phys. a, 13, p. 1297. , JPHAC5 0305-4470 10.1088/0305-4470/13/4/022 
504 |a Anderson, P.R., Parker, L., (1987) Phys. Rev. D, 36, p. 2963. , PRVDAQ 0556-2821 10.1103/PhysRevD.36.2963 
504 |a Birrell, N.D., (1978) Proc. R. Soc. a, 361, p. 513. , PRLAAZ 0080-4630 
504 |a Jacobson, T., Mattingly, D., (2001) Phys. Rev. D, 63, pp. 041502R. , PRVDAQ 0556-2821 10.1103/PhysRevD.63.041502 
504 |a Jacobson, T., Mattingly, D., (2001) Phys. Rev. D, 64, p. 024028. , PRVDAQ 0556-2821 10.1103/PhysRevD.64.024028 
504 |a Misner, C.W., Thorne, K.S., Wheeler, J.A., (1973) Gravitation, , Freeman, San Francisco 
504 |a Collins, J., (1984) Renormalization, , Cambridge University Press, Cambridge, England 
504 |a Mazzitelli, F.D., Paz, J.P., Castagnino, M.A., (1987) Phys. Rev. D, 36, p. 2994. , PRVDAQ 0556-2821 10.1103/PhysRevD.36.2994 
504 |a Gradshteyn, I.S., Ryzhik, I.M., (1994) Table of Integrals, Series and Products, , Academic Press, New York 
504 |a Abramowitz, M., Stegun, I., (1972) Handbook of Mathematical Functions, , Dover, New York 
504 |a McKeon, D.G.C., Tsoupros, G., (1992) Phys. Rev. D, 46, p. 1794. , PRVDAQ 0556-2821 10.1103/PhysRevD.46.1794 
520 3 |a Finite expressions for the mean value of the stress tensor corresponding to a scalar field with a generalized dispersion relation in a Friedmann-Robertson- Walker universe are obtained using adiabatic renormalization. Formally divergent integrals are evaluated by means of dimensional regularization. The renormalization procedure is shown to be equivalent to a redefinition of the cosmological constant and the Newton constant in the semiclassical Einstein equations. © 2005 The American Physical Society.  |l eng 
593 |a Departamento de Física Juan José Giambiagi, Facultad de Ciencias Exactas Y Naturales, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina 
700 1 |a Mazzitelli, F.D. 
700 1 |a Simeone, C. 
773 0 |d 2005  |g v. 72  |k n. 12  |p Phys Rev D Part Fields Gravit Cosmol  |x 15507998  |t Physical Review D - Particles, Fields, Gravitation and Cosmology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-29744439241&doi=10.1103%2fPhysRevD.72.124013&partnerID=40&md5=e250579566ccaa39ec9d71b90e8aad11  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1103/PhysRevD.72.124013  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15507998_v72_n12_p_Nacir  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507998_v72_n12_p_Nacir  |y Registro en la Biblioteca Digital 
961 |a paper_15507998_v72_n12_p_Nacir  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 64730