Organization of optic lobes that support motion detection in a semiterrestrial crab

There is a mismatch between the documentation of the visually guided behaviors and visual physiology of decapods (Malacostraca, Crustacea) and knowledge about the neural architecture of their visual systems. The present study provides a description of the neuroanatomical features of the four visual...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sztarker, J.
Otros Autores: Strausfeld, N.J, Tomsic, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2005
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15357caa a22013817a 4500
001 PAPER-3773
003 AR-BaUEN
005 20230518203314.0
008 190411s2005 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-27944436549 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCNEA 
100 1 |a Sztarker, J. 
245 1 0 |a Organization of optic lobes that support motion detection in a semiterrestrial crab 
260 |c 2005 
270 1 0 |m Tomsic, D.; Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina; email: tomsic@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Backwell, P.R., Christy, J.H., Telford, S.R., Jennions, M.D., Passmore, N.I., Dishonest signalling in a fiddler crab (2000) Proc R Soc Lond B Biol Sci, 267, pp. 719-724 
504 |a Berón De Astrada, M., Sztarker, J., Tomsic, D., Visual interneurons of the crab Chasmagnathus studied by intracellular recordings in vivo (2001) J Comp Physiol A, 187, pp. 37-44 
504 |a Berón De Astrada, M., Tomsic, D., Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura) (2002) J Comp Physiol A, 188, pp. 539-551 
504 |a Bodian, D., A new method for staining nerve fibers and nerve endings in mounted paraffin sections (1937) Anat Rec, 69, pp. 153-162 
504 |a Borst, A., Haag, J., Neural networks in the cockpit of the fly (2002) J Comp Physiol A, 188, pp. 419-437 
504 |a Buschbeck, E.K., Strausfeld, N.J., The relevance of neural architecture to visual performance: Phylogenetic conservation and variation in dipteran visual systems (1997) J Comp Neurol, 383, pp. 282-304 
504 |a Cannicci, S., Barelli, C., Vannini, M., Homing in the swimming crab Thalamita crenata: A mechanism based on underwater landmark memory (2000) Anim Behav, 60, pp. 203-210 
504 |a Dircksen, H., Skiebe, P., Abel, B., Agricola, H., Buchner, K., Muren, J.E., Nässei, D.R., Structure, distribution, and biological activity of novel members of the allatostatin family in the crayfish Orconectes limosus (1999) Peptides, 20, pp. 695-712 
504 |a Duffy, J.E., The ecology and evolution of eusociality in sponge-dwelling shrimp (2002) Genes, Behavior, and Evolution in Social Insects, pp. 1-38. , Kikuchi T, editor. Hokkaido: University of Hokkaido Press 
504 |a Eckert, M.P., Zeil, J., Towards an ecology of motion vision (2001) Motion Vision: Computational, Neural and Ecological Constraints., pp. 333-369. , Zanker JM, Zeil J, editors. New York: Springer Verlag 
504 |a Elofsson, R., Hagberg, M., Evolutionary aspects of the construction of the first optic neuropil (lamina) ganglionaris in Crustacea (1986) Zoo Morphol, 106, pp. 174-178 
504 |a Farris, S.M., Sinakevitch, I., Development and evolution of the insect mushroom bodies: Toward the understanding of conserved developmental mechanisms in a higher brain center (2003) Arthr Struct Dev, 32, pp. 79-101 
504 |a Glantz, R.M., Directional selectivity in nonspiking interneurons of the crayfish optic lobe: Evaluation of a linear model (1994) J Neurophysiol, 72, pp. 180-193 
504 |a Glantz, R.M., Polarization sensitivity in the crayfish optic lobe: Peripheral contributions to opponency and directionally selective motion detection (1996) J Neurophysiol, 76, pp. 3304-3414 
504 |a Glantz, R.M., Directionality and inhibition in crayfish tangential cells (1998) J Neurophysiol, 79, pp. 1157-1166 
504 |a Glantz, R.M., McIsaac, A., Two-channel polarization analyzer in the sustaining fiber-dimming fiber ensemble of crayfish visual system (1998) J Neurophysiol, 80, pp. 2571-2583 
504 |a Glantz, R.M., Miller, C.S., Signal processing in the crayfish optic lobe: Contrast, motion and polarization vision (2002) The Crustacean Nervous System, pp. 486-498. , Wiese K, editor. Berlin: Springer Verlag 
504 |a Glantz, R.M., Miller, C.S., Nässei, D.R., Tachykinin-related peptide and GABA-mediated presynaptic inhibition of crayfish photoreceptors (2000) J Neurosci, 20, pp. 1780-1790 
504 |a Hafner, G.S., The neural organization of the lamina ganglionaris in the crayfish: A Golgi and EM study (1973) J Comp Neurol, 152, pp. 255-280 
504 |a Hafner, G.S., The ultrastructure of retinula cell endings in the compound eye of the crayfish (1974) J Neurocytol, 3, pp. 295-311 
504 |a Hanström, B., (1928) Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere, pp. 1-624. , Berlin: Springer Verlag 
504 |a Harzsch, S., The phylogenetic significance of crustacean optic neuropus and chiasmatha: A re-examination (2002) J Comp Neurol, 453, pp. 10-21 
504 |a Hausen, K., The lobula complex of the fly: Structure, function and significance in visual behavior (1984) Photoreception and Vision in Invertebrates, pp. 523-599. , Ali MA, editor. New York: Plenum Press 
504 |a Hemmi, J.M., Zeil, J., Robust judgement of inter-object distance by an arthropod (2003) Nature, 421, pp. 160-163 
504 |a Hengstenberg, R., Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora (1982) J Comp Physiol, 149, pp. 179-193 
504 |a Herberholz, J., Issa, F.A., Edwards, D.H., Patterns of neural circuits activation and behavior during dominance hierarchy formation in freely behaving crayfish (2001) J Neurosci, 21, pp. 2759-2767 
504 |a Kirk, M.D., Waldrop, B., Glantz, R.M., The crayfish sustaining fibers. I. Morphological representation of visual receptive fields in the second optic neuropile (1982) J Comp Physiol, 146, pp. 419-425 
504 |a Kirk, M.D., Waldrop, B., Glantz, R.M., A quantitative correlation of contour sensitivity with dendritic density in an identified visual neuron (1983) Brian Res, 274, pp. 231-237 
504 |a Kirk, M.D., Waldrop, B., Glantz, R.M., The crayfish sustaining fibers. II. Response to illumination, membrane properties and adaptation (1983) J Comp Physiol, 150, pp. 175-179 
504 |a Kleinlogel, S., Marshall, N.J., Horwood, J.M., Land, M.F., Neuroarchitecture of the color and polarization vision system of the stomatopod Haptosquilla (2003) J Comp Neurol, 467, pp. 326-342 
504 |a Land, M.F., Layne, J., The visual control of behaviour in fiddler crabs: I. Resolution, thresholds and the role of the horizon (1995) J Comp Physiol A, 177, pp. 81-90 
504 |a Lozada, M., Romano, A., Maldonado, H., Long term habituation to a danger stimulus in the crab Chasmagnathus granulatus (1990) Physiol Behav, 47, pp. 35-41 
504 |a Maldonado, H., Crustaceans as models tu investigate memory illustrated by extensive behavioral and physiological studies in Chasmagnathus (2002) The Crustacean Nervous System, pp. 314-327. , Wiese K, editor. Berlin: Springer Verlag 
504 |a Medán, V., Oliva, D., Tomsic, D., Preferences for direction of movement on visual neurons of a crab (2004) Soc Neuroethol Abstr, 7, p. 142 
504 |a Merlo, E., Freudenthal, R., Maldonado, H., Romano, A., The IkB kinase inhibitor sulfasalazine impairs long-term memory in the crab Chasmagnathus (2002) Neuroscience, 112, pp. 161-172 
504 |a Merlo, E., Freudenthal, R., Maldonado, H., Romano, A., Activation of the transcription factor nf-kappab by retrieval is required for long-term memory reconsolidation (2005) Learn Mem, 12, pp. 23-29 
504 |a Nässei, D.R., The organization of the lamina ganglionaris of the prawn, Pandalus borealis (Kroyer) (1975) Cell Tissue Res, 163, pp. 445-464 
504 |a Nässei, D.R., Types and arrangements of neurons in the crayfish optic lamina (1977) Cell Tissue Res, 179, pp. 45-75 
504 |a Nässei, D.R., Elofsson, R., Odselius, R., Neuronal connectivity patterns in the compound eyes of Artemia salina and Daphnia magna (Crustacea: Branchiopoda) (1978) Cell Tissue Res, 190, pp. 435-437 
504 |a Pedreira, M.E., Maldonado, H., Protein synthesis subserves reconsolidation or extinction depending on reminder duration (2003) Neuron, 38, pp. 863-869 
504 |a Pedreira, M.E., Pérez-Cuesta, L., Maldonado, H., Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: Protein synthesis requirement and mediation by NMDA-type glutamatergic receptors (2002) J Neurosci, 22, pp. 8305-8311 
504 |a Pedreira, M.E., Pérez-Cuesta, L., Maldonado, H., Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extintion (2004) Learn Mem, 11, pp. 579-585 
504 |a Sinakevitch, I., Douglass, J.K., Scholtz, G., Loeser, R., Strausfeld, N.J., Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa (2003) J Comp Neurol, 467, pp. 150-172 
504 |a Stowe, S., The retina-lamina projection in the crab Leptograpsus variegatus (1977) Cell Tissue Res, 185, pp. 515-525 
504 |a Stowe, S., Ribi, W.A., Sandeman, D.C., The organization of the lamina ganglionaris of the crabs Scylla serrata and Leptograpsus variegatus (1977) Cell Tissue Res, 178, pp. 517-532 
504 |a Strausfeld, N.J., Crustacean-insect relationships: The use of brain characters to derive phylogeny amongst segmented invertebrates (1998) Brain Behav e, 52, pp. 186-206 
504 |a Strausfeld, N.J., Evolution of crustacean optic lobes and origins of chiasmata (2005) Arthr Struct Dev, , submitted 
504 |a Strausfeld, N.J., Nässei, D.R., Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insect (1980) Handbook of Sensory Physiology, Vol VII/6B, pp. 1-132. , Autrum H, editor. Berlin: Springer Verlag 
504 |a Sztarker, J., Tomsic, D., Binocular visual integration in the crustacean nervous system (2004) J Comp Physiol A, 190, pp. 951-962 
504 |a Tomsic, Visual learning in crabs investigated by intracellular recordings in vivo (2002) The Crustacean Nervous System, pp. 328-335. , Wiese K, editor. Berlin: Springer Verlag 
504 |a Tomsic, D., Maldonado, H., Central effect of morphine pretreatment on short- and long-term habituation to a danger stimulus in the crab Chasmagnathus (1990) Pharmacol Biochem Behav, 36, pp. 787-793 
504 |a Tomsic, D., Massoni, V., Maldonado, H., Habituation to a danger stimulus in two semiterrestrial crabs. Ontogenic, ecological and opioid system correlates (1993) J Comp Physiol, 173, pp. 621-633 
504 |a Tomsic, D., Pedreira, M.E., Romano, A., Hermitte, G., Maldonado, H., Context-US association as a determinant of long-term habituation in the crab Chasmagnathus (1998) Anim Learn Behav, 26, pp. 196-209 
504 |a Tomsic, D., Berón De Astrada, M., Sztarker, J., Identification of individual neurons reflecting short- and long-term visual memory in an arthropod (2003) J Neurosci, 23, pp. 8539-8546 
504 |a Wang-Bennett, L.T., Pfeiffer, C., Arnold, J., Glantz, R.M., Acetylcholine in the crayfish optic lobe: Concentration profile and cellular localization (1989) J Neurosci, 9, pp. 1864-1871 
504 |a Wiersma, C.A.G., Yamaguchi, T., Integration of visual stimuli by the crayfish central nervous system (1967) J Exp Biol, 47, pp. 409-431 
504 |a Wiersma, C.A.G., Roach, J.L.M., Glantz, R.M., Neural integration in the optic system (1982) The Biology of the Crustacea, Vol 4. Neural Integration and Behavior, 4, pp. 1-31. , Sandeman DC, Atwood HL, editors. New York: Academic Press 
504 |a Zeil, J., Hoffmann, M., Signals from "crabworld": Cuticular reflections in a fiddler crab colony (2001) J Exp Biol, 204, pp. 2561-2569 
520 3 |a There is a mismatch between the documentation of the visually guided behaviors and visual physiology of decapods (Malacostraca, Crustacea) and knowledge about the neural architecture of their visual systems. The present study provides a description of the neuroanatomical features of the four visual neuropils of the grapsid crab Chasmagnathus granulatus, which is currently used as a model for investigating the neurobiology of learning and memory. Visual memory in Chasmagnathus is thought to be driven from within deep retinotopic neuropil by large-field motion-sensitive neurons. Here we describe the neural architecture characterizing the Chasmagnathus lobula, in which such neurons are found. It is shown that, unlike the equivalent region of insects, the malacostracan lobula is densely packed with columns, the spacing of which is the same as that of retinotopic units of the lamina. The lobula comprises many levels of strata and columnar afferents that supply systems of tangential neurons. Two of these, which are known to respond to movement across the retina, have orthogonally arranged dendritic fields deep in the lobula. They also show evidence of dye coupling. We discuss the significance of commonalties across taxa with respect to the organization of the lamina and medulla and contrasts these with possible taxon-specific arrangements of deeper neuropils that support systems of matched filters. © 2005 Wiley-Liss, Inc.  |l eng 
593 |a Depto. Fisiologia, Biologia Molecular y Celular, Universidad de Buenos Aires, Inst. de Fis., Biologia Molecular y Neurociencias-Consejo de Investigaciones Cientificas y Tenisas, Buenos Aires 1428, Argentina 
593 |a Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, AZ 85721, United States 
593 |a Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina 
690 1 0 |a ARTHROPOD 
690 1 0 |a CRUSTACEAN 
690 1 0 |a INSECT 
690 1 0 |a LEARNING AND MEMORY 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTHROPOD 
690 1 0 |a ARTICLE 
690 1 0 |a CRAB 
690 1 0 |a CRUSTACEA 
690 1 0 |a HISTOLOGY 
690 1 0 |a IMAGE RECONSTRUCTION 
690 1 0 |a INSECT 
690 1 0 |a LEARNING 
690 1 0 |a MEMORY 
690 1 0 |a NONHUMAN 
690 1 0 |a OPTIC LOBE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a VISUAL NERVOUS SYSTEM 
690 1 0 |a ANIMALS 
690 1 0 |a BRACHYURA 
690 1 0 |a MALE 
690 1 0 |a MEMORY 
690 1 0 |a MOTION PERCEPTION 
690 1 0 |a NEUROPIL 
690 1 0 |a OPTIC LOBE 
690 1 0 |a VISUAL PATHWAYS 
650 1 7 |2 spines  |a VISION 
650 1 7 |2 spines  |a VISION 
650 1 7 |2 spines  |a VISION 
700 1 |a Strausfeld, N.J. 
700 1 |a Tomsic, D. 
773 0 |d 2005  |g v. 493  |h pp. 396-411  |k n. 3  |p J. Comp. Neurol.  |x 00219967  |w (AR-BaUEN)CENRE-678  |t Journal of Comparative Neurology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-27944436549&doi=10.1002%2fcne.20755&partnerID=40&md5=b75e1ba7dfc5bb708b8c355178998d3b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/cne.20755  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00219967_v493_n3_p396_Sztarker  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219967_v493_n3_p396_Sztarker  |y Registro en la Biblioteca Digital 
961 |a paper_00219967_v493_n3_p396_Sztarker  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 64726