Prediction of coefficients for lossless compression of multispectral images
We present a lossless compressor for multispectral Landsat images that exploits interband and intraband correlations. The compressor operates on blocks of 256 × 256 pixels, and performs two kinds of predictions. For bands 1, 2, 3, 4, 5, 6.2 and 7, the compressor performs an integer-to-integer wavele...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Acta de conferencia Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2005
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 06404caa a22007457a 4500 | ||
|---|---|---|---|
| 001 | PAPER-3764 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203313.0 | ||
| 008 | 190411s2005 xx ||||fo|||| 10| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-29244464784 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a PSISD | ||
| 100 | 1 | |a Ruedin, A.M.C. | |
| 245 | 1 | 0 | |a Prediction of coefficients for lossless compression of multispectral images |
| 260 | |c 2005 | ||
| 270 | 1 | 0 | |m Ruedin, A.M.C.; Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: anita@dc.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Strang, G., Nguyen, T., (1996) Wavelets and Filter Banks, , Wellesley Cambridge Press | ||
| 504 | |a Mallat, S., (1999) A Wavelet Tour of Signal Processing, , Academic Press | ||
| 504 | |a Daubechies, I., (1992) Ten Lectures on Wavelets, , Society for Industrial and Appl Mathematics | ||
| 504 | |a Calderbank, W.S.A.R., Daubechies, I., Yeo, B., Wavelet transforms that map integer to integers (1998) Applied and Computational Harmonics Analysis, 5 (3), pp. 332-369 | ||
| 504 | |a Sheng, F., Bilgin, A., Sementilli, P., Marcellin, M., Lossy and lossless image compression using reversible integer wavelet transforms (1998) ICIP | ||
| 504 | |a Said, A., Pearlman, W., A new fast and efficient image codec based on set partitioning in hierarchical trees (1996) IEEE Transactions on Circuits and Systems for Video Technology, 6, pp. 243-250 | ||
| 504 | |a Skodras, A., Christopoulos, C., Ebrahimi, T., The jpeg 2000 still image compression standard (2001) IEEE Signal Processing Magazine, 18, pp. 36-58. , September | ||
| 504 | |a Said, A., Pearlman, W., An image multiresolution representation for lossless and lossy compression (1996) IEEE Trans Image Proc, 5 (9) | ||
| 504 | |a Cover, T., Thomas, J., (1991) Elements of Information Theory, , Wiley-Interscience | ||
| 504 | |a Buccigrossi, R., Simoncelli, E., Image compression via joint statistical characterization in the wavelet domain (1999) IEEE Trans Signal Proc, 8, pp. 1688-1701 | ||
| 504 | |a Acevedo, D., Ruedin, A., Lossless compression of landsat images (2004) Argentine Symposium of Technology, 33 JAIIO | ||
| 504 | |a Tate, S.R., Band ordering in lossless compression of multispectral images (1997) IEEE Transactions on Computers, 46 (4), pp. 477-483 | ||
| 504 | |a Chuvieco, E., (1996) Fundamentes de Teledetección Espacial, RIALP | ||
| 504 | |a Landsat γ Science Data Users Handbook, , http://ltpwww.gsfc.nasa.gov/IAS/handbook | ||
| 504 | |a Acevedo, D.G., Ruedin, A.M.C., Reduction of interband correlation for landsat image compression (2005) Brazilian Symposium on Computer Graphics and Image Processing | ||
| 504 | |a Marcelo Weinberger, G.S., Sapiro, G., The loco-i lossless image compression algorithm: Principles and standardization into jpeg-ls (2000) IEEE Transactions on Image Processing, 9, pp. 1309-1324 | ||
| 504 | |a Martucci, S., Reversible compression of hdtv images using median adaptive prediction and arithmetic coding (1990) IEEE Proc. Internat. Symp. on Circuits and Systems, pp. 1310-1313 | ||
| 504 | |a Gonzalez, Woods, (2002) Digital Image Processing, 2nd Edition, , Prentice HallA4 - SPIE - The International Society for Optical Engineering | ||
| 520 | 3 | |a We present a lossless compressor for multispectral Landsat images that exploits interband and intraband correlations. The compressor operates on blocks of 256 × 256 pixels, and performs two kinds of predictions. For bands 1, 2, 3, 4, 5, 6.2 and 7, the compressor performs an integer-to-integer wavelet transform, which is applied to each block separately. The wavelet coefficients that have not yet been encoded are predicted by means of a linear combination of already coded coefficients that belong to the same orientation and spatial location in the same band, and coefficients of the same location from other spectral bands. A fast block classification is performed in order to use the best weights for each landscape. The prediction errors or differences are finally coded with an entropy - based coder. For band 6.1, we do not use wavelet transforms, instead, a median edge detector is applied to predict a pixel, with the information of the neighbouring pixels and the equalized pixel from band 6.2. This technique exploits better the great similarity between histograms of bands 6.1 and 6.2. The prediction differences are finally coded with a context-based entropy coder. The two kinds of predictions used reduce both spatial and spectral correlations, increasing the compression rates. Our compressor has shown to be superior to the lossless compressors Winzip, LOCO-I, PNG and JPEG2000. |l eng | |
| 593 | |a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a COMPRESSION |
| 690 | 1 | 0 | |a LOSSLESS |
| 690 | 1 | 0 | |a MEDIAN EDGE DETECTOR |
| 690 | 1 | 0 | |a MULTISPECTRAL |
| 690 | 1 | 0 | |a WAVELET |
| 690 | 1 | 0 | |a COMPRESSION |
| 690 | 1 | 0 | |a LOSSLESS |
| 690 | 1 | 0 | |a MEDIAN EDGE DETECTOR |
| 690 | 1 | 0 | |a MULTISPECTRAL |
| 690 | 1 | 0 | |a WAVELET |
| 690 | 1 | 0 | |a COMPRESSORS |
| 690 | 1 | 0 | |a CORRELATION METHODS |
| 690 | 1 | 0 | |a ENTROPY |
| 690 | 1 | 0 | |a IMAGE ANALYSIS |
| 690 | 1 | 0 | |a INTEGER PROGRAMMING |
| 690 | 1 | 0 | |a SPECTRUM ANALYSIS |
| 690 | 1 | 0 | |a DATA COMPRESSION |
| 700 | 1 | |a Acevedo, D.G. | |
| 711 | 2 | |c San Diego, CA |d 31 July 2005 through 1 August 2005 |g Código de la conferencia: 66291 | |
| 773 | 0 | |d 2005 |g v. 5889 |h pp. 1-10 |p Proc SPIE Int Soc Opt Eng |n Proceedings of SPIE - The International Society for Optical Engineering |x 0277786X |t Satellite Data Compression, Communications, and Archiving | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-29244464784&doi=10.1117%2f12.615386&partnerID=40&md5=cd5597badaac2615498c9ce36bc29159 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1117/12.615386 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_0277786X_v5889_n_p1_Ruedin |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0277786X_v5889_n_p1_Ruedin |y Registro en la Biblioteca Digital |
| 961 | |a paper_0277786X_v5889_n_p1_Ruedin |b paper |c NP | ||
| 962 | |a info:eu-repo/semantics/conferenceObject |a info:ar-repo/semantics/documento de conferencia |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a NORI | ||
| 999 | |c 64717 | ||