Prediction of coefficients for lossless compression of multispectral images

We present a lossless compressor for multispectral Landsat images that exploits interband and intraband correlations. The compressor operates on blocks of 256 × 256 pixels, and performs two kinds of predictions. For bands 1, 2, 3, 4, 5, 6.2 and 7, the compressor performs an integer-to-integer wavele...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ruedin, A.M.C
Otros Autores: Acevedo, D.G
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: 2005
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06404caa a22007457a 4500
001 PAPER-3764
003 AR-BaUEN
005 20230518203313.0
008 190411s2005 xx ||||fo|||| 10| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-29244464784 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PSISD 
100 1 |a Ruedin, A.M.C. 
245 1 0 |a Prediction of coefficients for lossless compression of multispectral images 
260 |c 2005 
270 1 0 |m Ruedin, A.M.C.; Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresArgentina; email: anita@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Strang, G., Nguyen, T., (1996) Wavelets and Filter Banks, , Wellesley Cambridge Press 
504 |a Mallat, S., (1999) A Wavelet Tour of Signal Processing, , Academic Press 
504 |a Daubechies, I., (1992) Ten Lectures on Wavelets, , Society for Industrial and Appl Mathematics 
504 |a Calderbank, W.S.A.R., Daubechies, I., Yeo, B., Wavelet transforms that map integer to integers (1998) Applied and Computational Harmonics Analysis, 5 (3), pp. 332-369 
504 |a Sheng, F., Bilgin, A., Sementilli, P., Marcellin, M., Lossy and lossless image compression using reversible integer wavelet transforms (1998) ICIP 
504 |a Said, A., Pearlman, W., A new fast and efficient image codec based on set partitioning in hierarchical trees (1996) IEEE Transactions on Circuits and Systems for Video Technology, 6, pp. 243-250 
504 |a Skodras, A., Christopoulos, C., Ebrahimi, T., The jpeg 2000 still image compression standard (2001) IEEE Signal Processing Magazine, 18, pp. 36-58. , September 
504 |a Said, A., Pearlman, W., An image multiresolution representation for lossless and lossy compression (1996) IEEE Trans Image Proc, 5 (9) 
504 |a Cover, T., Thomas, J., (1991) Elements of Information Theory, , Wiley-Interscience 
504 |a Buccigrossi, R., Simoncelli, E., Image compression via joint statistical characterization in the wavelet domain (1999) IEEE Trans Signal Proc, 8, pp. 1688-1701 
504 |a Acevedo, D., Ruedin, A., Lossless compression of landsat images (2004) Argentine Symposium of Technology, 33 JAIIO 
504 |a Tate, S.R., Band ordering in lossless compression of multispectral images (1997) IEEE Transactions on Computers, 46 (4), pp. 477-483 
504 |a Chuvieco, E., (1996) Fundamentes de Teledetección Espacial, RIALP 
504 |a Landsat γ Science Data Users Handbook, , http://ltpwww.gsfc.nasa.gov/IAS/handbook 
504 |a Acevedo, D.G., Ruedin, A.M.C., Reduction of interband correlation for landsat image compression (2005) Brazilian Symposium on Computer Graphics and Image Processing 
504 |a Marcelo Weinberger, G.S., Sapiro, G., The loco-i lossless image compression algorithm: Principles and standardization into jpeg-ls (2000) IEEE Transactions on Image Processing, 9, pp. 1309-1324 
504 |a Martucci, S., Reversible compression of hdtv images using median adaptive prediction and arithmetic coding (1990) IEEE Proc. Internat. Symp. on Circuits and Systems, pp. 1310-1313 
504 |a Gonzalez, Woods, (2002) Digital Image Processing, 2nd Edition, , Prentice HallA4 - SPIE - The International Society for Optical Engineering 
520 3 |a We present a lossless compressor for multispectral Landsat images that exploits interband and intraband correlations. The compressor operates on blocks of 256 × 256 pixels, and performs two kinds of predictions. For bands 1, 2, 3, 4, 5, 6.2 and 7, the compressor performs an integer-to-integer wavelet transform, which is applied to each block separately. The wavelet coefficients that have not yet been encoded are predicted by means of a linear combination of already coded coefficients that belong to the same orientation and spatial location in the same band, and coefficients of the same location from other spectral bands. A fast block classification is performed in order to use the best weights for each landscape. The prediction errors or differences are finally coded with an entropy - based coder. For band 6.1, we do not use wavelet transforms, instead, a median edge detector is applied to predict a pixel, with the information of the neighbouring pixels and the equalized pixel from band 6.2. This technique exploits better the great similarity between histograms of bands 6.1 and 6.2. The prediction differences are finally coded with a context-based entropy coder. The two kinds of predictions used reduce both spatial and spectral correlations, increasing the compression rates. Our compressor has shown to be superior to the lossless compressors Winzip, LOCO-I, PNG and JPEG2000.  |l eng 
593 |a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
690 1 0 |a COMPRESSION 
690 1 0 |a LOSSLESS 
690 1 0 |a MEDIAN EDGE DETECTOR 
690 1 0 |a MULTISPECTRAL 
690 1 0 |a WAVELET 
690 1 0 |a COMPRESSION 
690 1 0 |a LOSSLESS 
690 1 0 |a MEDIAN EDGE DETECTOR 
690 1 0 |a MULTISPECTRAL 
690 1 0 |a WAVELET 
690 1 0 |a COMPRESSORS 
690 1 0 |a CORRELATION METHODS 
690 1 0 |a ENTROPY 
690 1 0 |a IMAGE ANALYSIS 
690 1 0 |a INTEGER PROGRAMMING 
690 1 0 |a SPECTRUM ANALYSIS 
690 1 0 |a DATA COMPRESSION 
700 1 |a Acevedo, D.G. 
711 2 |c San Diego, CA  |d 31 July 2005 through 1 August 2005  |g Código de la conferencia: 66291 
773 0 |d 2005  |g v. 5889  |h pp. 1-10  |p Proc SPIE Int Soc Opt Eng  |n Proceedings of SPIE - The International Society for Optical Engineering  |x 0277786X  |t Satellite Data Compression, Communications, and Archiving 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-29244464784&doi=10.1117%2f12.615386&partnerID=40&md5=cd5597badaac2615498c9ce36bc29159  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1117/12.615386  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0277786X_v5889_n_p1_Ruedin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0277786X_v5889_n_p1_Ruedin  |y Registro en la Biblioteca Digital 
961 |a paper_0277786X_v5889_n_p1_Ruedin  |b paper  |c NP 
962 |a info:eu-repo/semantics/conferenceObject  |a info:ar-repo/semantics/documento de conferencia  |b info:eu-repo/semantics/publishedVersion 
963 |a NORI 
999 |c 64717