Time and frequency study of intermittency

Intermittency in the logistic map is studied by using Discrete Wavelet and Gabor Transform. The evolution of the periodic zones in the appearance of bursts is observed as function of the parameter. The total energy of the system is found concentrated at high frequency levels, when more bursts are pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Figliola, A.
Otros Autores: Schuschny, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1995
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02614caa a22003497a 4500
001 PAPER-3636
003 AR-BaUEN
005 20230518203305.0
008 190411s1995 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-58149209244 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CSFOE 
100 1 |a Figliola, A. 
245 1 0 |a Time and frequency study of intermittency 
260 |c 1995 
270 1 0 |m Figliola, A.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, (UBA) Pab. I Ciudad Universitaria., 1428 Buenos Aires, Argentina; email: fig@dfuba.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Daubechies, (1992) Ten Lectures on Wavelets, , SIAM 
504 |a Delprat, Escudié, Guillemain, Asymptotic Wavelet and Gabor Analysis Extraction of Instantaneous Frequencies (1992) IEEE Transactions on Information Theory, 38 (2) 
504 |a Pomeau, Manneville, Intermittent Transition to Turbulence in Dissipative Dynamical Systems (1980) Commun. Math. Phys., 74, pp. 189-197 
504 |a Hirsch, Huberman, Scalapino, Theory of Intermittency (1982) Physical Review A, 25 (1) 
520 3 |a Intermittency in the logistic map is studied by using Discrete Wavelet and Gabor Transform. The evolution of the periodic zones in the appearance of bursts is observed as function of the parameter. The total energy of the system is found concentrated at high frequency levels, when more bursts are present. It is shown that the results obtained with time-frequency analysis are in agreement with the prediction of the analytical model. © 1995 Elsevier Science Ltd.  |l eng 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, (UBA) Pab. I Ciudad Universitaria., 1428 Buenos Aires, Argentina 
700 1 |a Schuschny, A. 
773 0 |d 1995  |g v. 6  |h pp. 131-135  |k n. C  |p Chaos Solitons Fractals  |x 09600779  |w (AR-BaUEN)CENRE-4143  |t Chaos, Solitons and Fractals 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149209244&doi=10.1016%2f0960-0779%2895%2980020-H&partnerID=40&md5=5a8d22a0c86137e1263c5b8f6e549018  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/0960-0779(95)80020-H  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09600779_v6_nC_p131_Figliola  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09600779_v6_nC_p131_Figliola  |y Registro en la Biblioteca Digital 
961 |a paper_09600779_v6_nC_p131_Figliola  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 64589