Detection of coloured stimuli by honeybees: Minimum visual angles and receptor specific contrasts

Honeybees Apis mellifera were trained to distinguish between the presence and the absence of a rewarded coloured spot, presented on a vertical, achromatic plane in a Y-maze. They were subsequently tested with different subtended visual angles of that spot, generated by different disk diameters and d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Giurfa, M.
Otros Autores: Vorobyev, M., Kevan, P., Menzel, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 1996
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12009caa a22010577a 4500
001 PAPER-3457
003 AR-BaUEN
005 20230518203255.0
008 190411s1996 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0030028422 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCPAD 
100 1 |a Giurfa, M. 
245 1 0 |a Detection of coloured stimuli by honeybees: Minimum visual angles and receptor specific contrasts 
260 |b Springer Verlag  |c 1996 
270 1 0 |m Giurfa, M.; Insittut für Neurobiologie, Freie Universität Berlin, Königin-Luise- Sirasse 28/30, D-1 4195 Berlin, Germany 
506 |2 openaire  |e Política editorial 
504 |a Backhaus, W., Color opponent coding in the visual system of the honeybee (1991) Vision Res, 31, pp. 1381-1397 
504 |a Backhaus, W., Color vision in honey bees (1992) Neurosci Biobehav Rev, 16, pp. 1-12 
504 |a Backhaus, W., Color vision and color choice behavior of the honeybee (1993) Apidologie, 24, pp. 309-331 
504 |a Backhaus, W., Menzel, R., Color distance derived from a receptor model of color vision in the honeybee (1987) Biol Cybern, 55, pp. 321-331 
504 |a Backhaus, W., Menzel, R., Kreißl, S., Multidimensional scaling of color similarity in bees (1987) Biol Cybern, 56, pp. 293-304 
504 |a Braitenberg, V., Ordnung und Orientierung der Elemente im Sehsystem der Fliege (1970) Kybernetik, 7, pp. 235-242 
504 |a Brandt, R., Backhaus, W., Dittrich, M., Menzel, R., Simulation of threshold spectral sensitivity according to the color theory for the honeybee (1993) Proc 21st Göttingen Neurobiology Conference, p. 374. , Heisenberg M, Elsner N (eds) Gene-brain-behaviour. Thieme. Stuttgart 
504 |a Butler, C.G., The importance of perfume in the discovery of food by the worker honey-bee (Apis mellifera L.) (1951) Proc R Soc Lond B, 138, pp. 403-413 
504 |a Chittka, L., Menzel, R., The evolutionary adaptation of flower colours and the insect pollinators' colour vision (1992) J Comp Physiol A, 171, pp. 171-181 
504 |a Chittka, L., Beier, W., Hertel, H., Steinmann, E., Menzel, R., Opponent coding is a universal strategy to evaluate the photo-receptor inputs in Hymenoptera (1992) J Comp Physiol A, 170, pp. 545-563 
504 |a Chittka, L., Shmida, A., Troje, N., Menzel, R., Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera (1994) Vision Res, 34, pp. 1489-1508 
504 |a Daumer, K., Reizmetrische Untersuchung des Farbensehens der Bienen (1956) Z Vergl Physiol, 38, pp. 413-478 
504 |a Domjan, M., Burkhard, B., (1986) The Principles of Learning and Behavior, , Brooks/Cole, California 
504 |a Faegri, K., Van Der Pijl, L., (1978) The Principles of Pollination Ecology, 3rd Ed., , Pergamon, Oxford 
504 |a Frisch, K., Über den Geruchsinn der Bienen und seine blütenbiologische Bedeutung (1919) Zool Jb Physiol, 37, pp. 2-238 
504 |a Frisch, Kv., (1965) Tanzsprache und Orientierung der Bienen, , Springer, Berlin 
504 |a Götz, K.G., Optomotorische Untersuchung des visuellen Sytems einiger Auaenmutanten der Fruchtfliege Drosophila (1964) Kybernetik, 2, pp. 77-92 
504 |a Heiversen, Dv., Zur spektralen Unterschiedsempfindlichkeit der Honigbiene (1972) J Comp Physiol, 80, pp. 439-472 
504 |a Hollan, P.C., "Occasion setting" in Pavlovian feature positive discriminations (1983) Quantitative Analyses of Behavior: Discrimination Processes, 4, pp. 183-206. , Commons ML, Herrnstein RJ, Wagner AR (eds) Ballinger, Cambridge 
504 |a Kaiser, W., Liske, E., Die optomotorische Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern (1974) J Comp Physiol, 89, pp. 391-408 
504 |a Kevaa, P.G., How honey bees forage for pollen at skunk cabbage. Symplocarpus foetidus (Araceae) (1989) Apidologie, 20, pp. 485-490 
504 |a Kevan, P.G., Baker, H.G., Insects as flower visitors and pollinators (1983) Annu Rev Entomol, 28, pp. 407-453 
504 |a Kevan, P.G., Eisikowitch, D., Ambrose, J.D., Kemp, J.R., Cryptic dioecy and insect pollination in Rosa setigera Michx. (Rosaceae), a rare plant of Carolinian Canada (1990) Biol J Linn Soc, 40, pp. 229-243 
504 |a Kirschfeld, K., Optomotorische Reaktionen der Biene auf bewegte "Polansations-Muster" (1973) Z Naturforsch, 28 C, pp. 329-338 
504 |a Kugler, H., Blütenökologische Untersuchungen mit Hummeln VI. Planta (1933) Arch Wiss Bot, 19, pp. 781-789 
504 |a Laughlin, S.B., Horridge, G.A., Angular sensitivity of the retinula cells of dark-adapted worker bee (1971) Z Vergl Physiol, 74, pp. 329-335 
504 |a Lehrer, M., To be or not to be a colour-seeing bee (1987) Israel J Entomol, 21, pp. 51-76 
504 |a Lehrer, M., Parallel processing of motion, shape and colour in the visual system of the bee (1993) Sensory Systems of Arthropods, pp. 266-272. , Wiese K, Gribakin FG, Popov AV, Reinninger G (eds) Birkhauser, Basel 
504 |a Lehrer, M., Spatial vision in the honeybee: The use of different cues in different tasks (1994) Vision Res, 34, pp. 2363-2385 
504 |a Lehrer, M., Bischof, S., Detection of model flowers by honeybees: The role of chromatic and achromatic contrast (1995) Naturwissenschaften, 82, pp. 145-147 
504 |a Lehrer, M., Srinivasan, M.V., Object detection by honeybees: Why do they land on edges? (1993) J Comp Physiol A, 173, pp. 23-32 
504 |a Lehrer, M., Srinivasan, M.V., Zhang, S.W., Horridge, G.A., Motion cues provide the bees' visual world with a third dimension (1988) Nature, 332, pp. 356-357 
504 |a Lehrer, M., Srinivasan, M.V., Zhang, S.W., Visual edge detection in the honeybee and its chromatic properties (1990) Proc R Soc Lond B, 238, pp. 321-330 
504 |a Menzel, R., Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica) (1967) Z Vergl Physiol, 56, pp. 22-62 
504 |a Menzel, R., Das Gedächtnis der Honigbiene für Spektralfarben. I. Kurzzeitiges and Iangzeitiges Behalten (1968) Z Vergl Physiol, 60, pp. 82-102 
504 |a Menzel, R., Learning in honeybees in an ecological and behavioral context (1985) Experimental Behavioral Ecology, pp. 55-74. , Hölldobler B, Lindauer M (eds) Fischer, Stuttgart 
504 |a Menzel, R., Backhaus, W., Colour vision in insects (1991) Vision and Visual Dysfunction. The Perception of Colour, pp. 262-288. , Gouras P (ed) MacMillan, London 
504 |a Menzel, R., Greggers, U., Natural phototaxis and its relationship to colour vision in honeybees (1985) J Comp Physiol A, 157, pp. 311-321 
504 |a Menzel, R., Shmida, A., The ecology of flower colours and the natural colour vision of insect pollinators: The Israeli flora as a study case (1993) Biol Rev, 68, pp. 81-120 
504 |a Menzel, R., Greggers, U., Hammer, M., Functional organization of appetitive learning and memory in a generalist pollinator, the honey bee (1993) Insect Learning. Ecological and Evolutionary Perspectives, pp. 79-125. , Papaj D. Lewis AC (eds) Chapman & Hall, New York 
504 |a Rescorla, R.A., Durlach, P.J., Grau, J.W., Context learning in Pavlovian conditioning (1985) Context and Learning, pp. 23-56. , Balsam PD, Tomie A (eds) Erlsbaum, Hillsdale 
504 |a Rossel, S., Navigation by bees using polarized skylight (1993) Comp Biochem Physiol, 104 A, pp. 695-708 
504 |a Rossel, S., Wehner, R., Polarization vision in bees (1986) Nature, 323, pp. 128-131 
504 |a Seidl, R., Die Sehfelder und Ommatidien-Divergenzwinkei der drei Kasten der Honigbiene (Apis mellifica) (1980) Verh Dtsch Zool Ges, p. 367. , 1980 
504 |a Snyder, A.W., Physics of vision in compound eyes (1979) Handbook of Sensory Physiology, 7 (6 A), pp. 225-313. , Autrum HJ (ed) Vision in invertebrates Springer, Berlin Heidelberg New York 
504 |a Srinivasan, M.V., Lehrer, M., Spatial acuity of honeybee vision and its spectral properties (1988) J Comp Physiol A, 162, pp. 159-172 
504 |a Stavenga, D.G., Pseudopupils of compound eyes (1979) Handbook of Sensory Physiolosy, 7 (6 A), pp. 357-439. , Autrum HJ (ed) Vision in invertebrates Springer, Berlin Heidelberg New York 
504 |a Tunstall, J., Horridge, G.A., Electrophysiological investigation of the optics of the locust retina (1967) Z Vergl Physiol, 55, pp. 167-182 
504 |a Vallet, A.M., Coles, J.A., The perception of small objects by the drone honeybee (1993) J Comp Physiol A, 172, pp. 183-188 
504 |a Wehner, R., Dorsoventral asymmetry in the visual field of the bee Apis mellifica (1972) J Comp Physiol, 77, pp. 256-277 
504 |a Wehner, R., The generalization of directional visual stimuli in the honey bee, Apis mellifera (1973) J Insect Physiol, 17, pp. 1579-1591 
504 |a Weizsäcker, E.V., Dressurversuche zum Formensehen der Bienen, insbesondere unter wechselnden Helligkeitsbedingungen (1970) Z Vergl Physiol, 69, pp. 296-310 
504 |a Zar, J.H., (1985) Biostatistical Analysis, , Prentice Hall, New Jersey 
520 3 |a Honeybees Apis mellifera were trained to distinguish between the presence and the absence of a rewarded coloured spot, presented on a vertical, achromatic plane in a Y-maze. They were subsequently tested with different subtended visual angles of that spot, generated by different disk diameters and different distances from the decision point in the device. Bees were trained easily to detect bee-chromatic colours, but not an achromatic one. Chromatic contrast was not the only parameter allowing learning and, therefore, detection: αmin, the subtended visual angle at which the bees detect a given stimulus with a probability P0 = 0.6, was 5° for stimuli presenting both chromatic contrast and contrast for the green photoreceptors [i.e. excitation difference in the green photoreceptors, between target and background (green contrast)], and 15° for stimuli presenting chromatic but no green contrast. Our results suggest that green contrast can be utilized for target detection if target recognition has been established by means of the colour vision system. The green-contrast signal would be used as a far-distance signal for flower detection. This signal would always be detected before chromatic contrast during an approach flight and would be learned in compound with chromatic contrast, in a facilitation-like process.  |l eng 
593 |a Insittut für Neurobiologie, Freie Universität Berlin, Königin-Luise- Sirasse 28/30, D-1 4195 Berlin, Germany 
593 |a Department of Biological Sciences, FCEyN, University of Buenos Aires, 1428 Buenos Aires, Argentina 
593 |a Inst. of Evol. Physiol./Biochemistry, Academy of Sciences, St. Petersburg, Russian Federation 
593 |a Department of Environmental Biology, University of Guelph, Guelph, Ont., N1G 2W1, Canada 
690 1 0 |a APIS MELLIFERA 
690 1 0 |a COLOUR VISION 
690 1 0 |a DETECTION 
690 1 0 |a HONEYBEES 
700 1 |a Vorobyev, M. 
700 1 |a Kevan, P. 
700 1 |a Menzel, R. 
773 0 |d Springer Verlag, 1996  |g v. 178  |h pp. 699-709  |k n. 5  |p J. Comp. Physiol. A Sens. Neural. Behav. Physiol.  |x 03407594  |w (AR-BaUEN)CENRE-233  |t Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030028422&doi=10.1007%2fBF00227381&partnerID=40&md5=dbc7d0fe96a5c390cc36d995293bbca0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/BF00227381  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03407594_v178_n5_p699_Giurfa  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03407594_v178_n5_p699_Giurfa  |y Registro en la Biblioteca Digital 
961 |a paper_03407594_v178_n5_p699_Giurfa  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 64410