Effect of intraparticle diffusion on catalyst decay

The interrelation between internal diffusion and deactivation is examined. The study is centered on the copper catalyst used in the water-gas-shift reaction (WGSR). This catalyst is deactivated by the presence of chlorine in the feed. A Langmuir-Hinshelwood model for the reaction kinetics is conside...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Chocrón, M.
Otros Autores: Raffo Calderón, M.C, Amadeo, Norma Elvira, Laborde, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 1996
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05513caa a22007337a 4500
001 PAPER-3395
003 AR-BaUEN
005 20240927145041.0
008 190411s1996 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0030110585 
030 |a CESCA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Chocrón, M. 
245 1 0 |a Effect of intraparticle diffusion on catalyst decay 
260 |b Elsevier Ltd  |c 1996 
504 |a Amadeo, N., Cerrella, E., Pennella, F., Laborde, M., Kinetics of the low-temperature water-gas shift reaction on a copper/zinc oxide/alumina catalyst (1995) Latin Am. Appl. Res., 25, p. 21 
504 |a Chu, C., Effect of adsorption on the fouling of catalyst pellets (1968) IEC Fundam., 7, p. 509 
504 |a Elnasahie, S.S.E.H., Alhabdan, F.M., Mathematical modelling and computer simulation of industrial water-gas shift converters (1989) Math. Comput. Modelling, 12, p. 1017 
504 |a Gonzalez Velasco, J., Gutiérrez Ortiz, M., Gonzalez Marcos, J., Amadeo, N., Laborde, M., Paz, M., Optimal inlet temperature trajectories for adiabatic packed reactors with catalyst decay (1992) Chem. Engng Sci., 47, p. 1495 
504 |a Grzesik, M., Skrzypek, J., Wojciechowski, B., Modelling of intraparticle diffusion affected by the time-on-stream catalyst decay (1992) Chem. Engng Sci., 47, p. 2805 
504 |a Grzesik, M., Skrzypek, J., Wojciechowski, B., Time-on-stream catalyst decay behavior in a fixed-bed catalytic reactor under the influence of intraparticle diffusion: Intraparticle diffusion affects only catalytic reactions (1992) Chem. Engng Sci., 47, p. 4049 
504 |a Hegedus, L.L., On the poisoning of porous catalysts by an impurity in the feed (1974) Ind. Engng Chem. Fundam., 13, p. 190 
504 |a Hlavacek, M., Kubicek, V., (1983) Numerical Solutions of Non-linear Boundary Value Problems with Applications, , Prentice-Hall, Englewood Cliffs, NJ 
504 |a Krishnaswamy, S., Kittrell, J.R., Diffusional influences on deactivation rates (1981) A.I.Ch.E. J., 27, p. 120 
504 |a Levenspiel, O., (1972) Chemical Reactor Engineering, 2nd. Edition, , Wiley, New York 
504 |a Masamune, S., Smith, J.M., Performance of fouled catalyst pellets (1966) A.I.Ch.E. J., 12, p. 384 
504 |a Murakami, Y., Kobayashi, T., Hattori, T., Masuda, M., Effect of intraparticle diffusion on catalyst fouling (1968) IEC Fundam., 7, p. 599 
504 |a Salmi, T., Hakkarainen, R., Kinetic study of the low-temperature water-gas shift reaction over a Cu-ZnO catalyst (1989) Appl. Catal, 49, p. 285 
504 |a Van Herwijnen, T., De Jong, W., Kinetics and mechanism of the CO shift on Cu/ZnO: 1. Kinetics of the forward and reverse CO shift reactions (1980) J. Catal., 63, p. 83 
504 |a Wheeler, A., (1955) Catalysis, 2. , Chap 2 (Edited by P. H. Emmet). Reinhold Pub. Corp., New York 
504 |a Young, P.W., Clark, C.B., Why shift catalysts deactivate (1974) Chem. Engng Prog., 52, p. 810 
506 |2 openaire  |e Política editorial 
520 3 |a The interrelation between internal diffusion and deactivation is examined. The study is centered on the copper catalyst used in the water-gas-shift reaction (WGSR). This catalyst is deactivated by the presence of chlorine in the feed. A Langmuir-Hinshelwood model for the reaction kinetics is considered. With a high diffusional resistance, the poison is eliminated inside the pellet, and this explains the observed inhomogeneous deactivation of the industrial bed. The life of the catalyst increases when diffusional resistance for the poison increases. A general equation for the effectiveness factor, which includes the catalyst decay, is denned. Copyright © 1996 Elsevier Science Ltd. All rights reserved.  |l eng 
593 |a Department of Chemical Engineering (FI) - PINMATE (FCEyN), University of Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
593 |a Department of Chemical Reactors, CNEA, Buenos Aires, Argentina 
690 1 0 |a BOUNDARY CONDITIONS 
690 1 0 |a CATALYST ACTIVITY 
690 1 0 |a CATALYSTS 
690 1 0 |a CHEMICAL REACTORS 
690 1 0 |a CHLORINE 
690 1 0 |a COPPER 
690 1 0 |a DECAY (ORGANIC) 
690 1 0 |a MATHEMATICAL MODELS 
690 1 0 |a PARTICLES (PARTICULATE MATTER) 
690 1 0 |a REACTION KINETICS 
690 1 0 |a CATALYST DECAY 
690 1 0 |a DEACTIVATION 
690 1 0 |a DIFFUSIONAL RESISTANCE 
690 1 0 |a INDUSTRIAL BED 
690 1 0 |a LANGMUIR-HINSHELWOOD MODEL 
690 1 0 |a WATER GAS SHIFT REACTION 
690 1 0 |a DIFFUSION 
700 1 |a Raffo Calderón, M.C. 
700 1 |a Amadeo, Norma Elvira 
700 1 |a Laborde, M. 
773 0 |d Elsevier Ltd, 1996  |g v. 51  |h pp. 683-688  |k n. 5  |p Chem. Eng. Sci.  |x 00092509  |w (AR-BaUEN)CENRE-291  |t Chemical Engineering Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030110585&doi=10.1016%2f0009-2509%2895%2900299-5&partnerID=40&md5=e4dab62b66ff2688eeb89d654a4b2285  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/0009-2509(95)00299-5  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00092509_v51_n5_p683_Chocron  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092509_v51_n5_p683_Chocron  |y Registro en la Biblioteca Digital 
961 |a paper_00092509_v51_n5_p683_Chocron  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 64348