Distributive lattices with an operator
It was shown in [3] (see also [5]) that there is a duality between the category of bounded distributive lattices endowed with a join-homomorphism and the category of Priestley spaces endowed with a Priestley relation. In this paper, bounded distributive lattices endowed with a join-homomorphism, are...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Springer Netherlands
1996
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 04448caa a22005297a 4500 | ||
|---|---|---|---|
| 001 | PAPER-3389 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203251.0 | ||
| 008 | 190411s1996 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-0039715876 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Petrovich, A. | |
| 245 | 1 | 0 | |a Distributive lattices with an operator |
| 260 | |b Springer Netherlands |c 1996 | ||
| 270 | 1 | 0 | |m Petrovich, A.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina; email: apetrov@mate.dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Blok, W.J., Dwinger, P.H., Equational classes of closure algebras (1975) Ind. Math., 37, pp. 189-198 | ||
| 504 | |a Cignoli, R., Distributive lattice congruences and Priestley spaces (1991) Actas Del Primer Congreso Dr. Antonio Monteiro, pp. 81-84. , Universidad Nacional del Sur, Bahía Bianca | ||
| 504 | |a Cignoli, R., Lafalce, S., Petrovich, A., Remarks on Priestley duality for distributive lattices (1991) Order, 8, pp. 299-315 | ||
| 504 | |a Cignoli, R., Quantifiers on distributive lattices (1991) Discrete Math., 96, pp. 183-197 | ||
| 504 | |a Goldblatt, R., Varieties of Complex algebras (1989) Ann. Pure Appl. Logic., 44, pp. 173-242 | ||
| 504 | |a McKinsey, J.C.C., Tarski, A., The algebra of topology (1944) Ann. of Math., 45, pp. 141-191 | ||
| 504 | |a Petrovich, A., Monadic de Morgan Algebras, , to appear | ||
| 504 | |a Priestley, H.A., Representation of distributive lattices by means of ordered Stone spaces (1970) Bull. London Math. Soc., 2, pp. 186-190 | ||
| 504 | |a Priestley, H.A., Ordered topological spaces and the representation of distributive lattices (1972) Proc. London Math. Soc., 3, pp. 507-530 | ||
| 504 | |a Priestley, H.A., Stone lattices: A topological approach (1974) Fund. Math., 84, pp. 127-143 | ||
| 504 | |a Priestley, H.A., Ordered sets and duality for distributive lattices (1984) Ann. Discrete Math., 23, pp. 39-60 | ||
| 504 | |a Rasiowa, H., Sikorski, R., (1963) The Mathematics of Metamathematics, , Warszawa | ||
| 520 | 3 | |a It was shown in [3] (see also [5]) that there is a duality between the category of bounded distributive lattices endowed with a join-homomorphism and the category of Priestley spaces endowed with a Priestley relation. In this paper, bounded distributive lattices endowed with a join-homomorphism, are considered as algebras and we characterize the congruences of these algebras in terms of the mentioned duality and certain closed subsets of Priestley spaces. This enable us to characterize the simple and subdirectly irreducible algebras. In particular, Priestley relations enable us to characterize the congruence lattice of the Q-distributive lattices considered in [4]. Moreover, these results give us an effective method to characterize the simple and subdirectly irreducible monadic De Morgan algebras [7]. The duality considered in [4], was obtained in terms of the range of the quantifiers, and such a duality was enough to obtain the simple and subdirectly irreducible algebras, but not to characterize the congruences. © 1996 Kluwer Academic Publishers. |l eng | |
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a BOUNDED DISTRIBUTIVE LATTICES |
| 690 | 1 | 0 | |a CLOSURE OPERATORS |
| 690 | 1 | 0 | |a CONGRUENCE RELATIONS |
| 690 | 1 | 0 | |a JOIN-HOMOMORPHISMS |
| 690 | 1 | 0 | |a LATTICE HOMOMORPHISMS |
| 690 | 1 | 0 | |a PRIESTLEY RELATIONS |
| 690 | 1 | 0 | |a PRIESTLEY SPACES |
| 690 | 1 | 0 | |a QUANTIFIERS |
| 690 | 1 | 0 | |a VARIETIES |
| 773 | 0 | |d Springer Netherlands, 1996 |g v. 56 |h pp. 205-224 |k n. 1-2 |p Stud. Logica |x 00393215 |w (AR-BaUEN)CENRE-365 |t Studia Logica | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0039715876&doi=10.1007%2fBF00370147&partnerID=40&md5=15ba536a1082aad911d4008274136ff2 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/BF00370147 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00393215_v56_n1-2_p205_Petrovich |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00393215_v56_n1-2_p205_Petrovich |y Registro en la Biblioteca Digital |
| 961 | |a paper_00393215_v56_n1-2_p205_Petrovich |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 64342 | ||