Thermal Stability of Dehydrated α-Amylase in Trehalose Matrices in Relation to its Phase Transitions

Thermal stability of α-amylase in trehalose matrices of reduced moisture content was studied as affected by phase transitions occurring as a result of increasing temperature at a moisture content of 50 g/kg. Removal of water greatly enhanced thermal stability of α-amylase but when trehalose was pres...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Terebiznik, M.R
Otros Autores: Buera, M.P, Pilosof, A.M.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1997
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09953caa a22008057a 4500
001 PAPER-3217
003 AR-BaUEN
005 20230518203241.0
008 190411s1997 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0000521006 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Terebiznik, M.R. 
245 1 0 |a Thermal Stability of Dehydrated α-Amylase in Trehalose Matrices in Relation to its Phase Transitions 
260 |c 1997 
270 1 0 |m Terebiznik, M.R.; Depto. de Ing. Química, Universidad de Buenos Aires, (1428), Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Parkin, K.L., Environmental effects on enzyme activity (1993) Enzymes in Food Processing, , San Diego: Academic Press, Inc 
504 |a Berny, J.F., Hennebert, G.L., Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: Effects of protectants and cooling rates (1991) Mycologia, 83, pp. 805-815 
504 |a Leslie, S.B., Teter, S.A., Crowe, L.M., Crowe, J.H., Trehalose lowers membrane phase transitions in dry yeast cells (1995) Biochimica et Biophysica Acta, 1192, pp. 7-13 
504 |a Tan, C.S., Van Ingen, C.W., Talsma, H., Van Mileternburg, J.C., Steffensen, C.L., Vlug, I.J.A., Stalpers, J.A., Freeze-drying of fungi: Influence of composition and glass transition temperature of the protectant (1995) Cryobiology, 32, pp. 60-67 
504 |a Hottiger, T., De Virgilio, C., Hall, M.N., Boller, T., Wiemken, A., The role of trehalose synthesis for the acquisition of thermotolerance in yeast II. Physiological concentrations of trehalose increase the thermal stability of proteinsin vitro (1994) European Journal of Biochemistry, 219, pp. 187-193 
504 |a Colaço, C., Sen, S., Thangavelu, M., Pinder, S., Roser, B., Extraordinary stability of enzymes dried in trehalose: Simplified molecular biology (1992) Bio/technology, 10, pp. 1007-1011 
504 |a Crowe, J.H., Hoekstra, F.A., Crowe, L.M., Membrane phase transitions are responsible for imbibitional damage in dry pollen (1989) Proceeding of the Nationale Academy of Science, 86, pp. 520-523 
504 |a Cardona, S., Schebor, C., Buera, M.P., Karel, M., Chirife, J., Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy stage and role of trehalose crystallization (1997) Journal of Food Science, 62, pp. 105-112 
504 |a Roos, Y., Water activity and physical state effects on amorphous food stability (1993) Journal of Food Processing and Preservation, 16, pp. 433-447 
504 |a White, G.W., Cakebread, S.H., The glassy state in certain sugar containing food products (1996) Journal of Food Technology, 1, pp. 73-78 
504 |a Slade, L., Levine, H., Beyond water activity: Recent advances based on an alternative approach to the assessment of the food quality and safety (1991) CRC Critical Reviews in Food Science and Nutrition, 30, pp. 115-360 
504 |a Karmas, R., Buera, M.P., Karel, M., Effect of glass transitions on rates of non-enzymatic browning in food systems (1992) Journal of Agriculture and Food Chemistry, 40, pp. 873-879 
504 |a Berlin, E., Anderson, B.A., Pallansch, M.J., Effect of temperature on water vapor sorption by dried milk powders (1970) Journal of Dairy Science, 53, pp. 146-149 
504 |a Saltmarch, M., Vagnini-Ferrari, M., Labuza, T.P., Theoretical basis and application of kinetics to browning in spray-dried sweet whey powders (1981) Progress in Food Nutrition Science, 5, pp. 331-334 
504 |a Shimada, Y., Roos, Y.H., Karel, M., Oxidation of methyl-linoleate encapsulated in amorphous lactose based food model (1991) Journal of Agriculture and Food Chemistry, 39, pp. 637-641 
504 |a Roos, Y., Karel, M., Crystallization of amorphous lactose (1992) Journal of Food Science, 57, pp. 775-777 
504 |a Mazzobre, M.F., Buera, M.P., Chirife, J., Protective role of trehalose on thermal stability of lactase in relation to its glass and crystal forming properties and effect of delaying crystallization (1997) Lebensmittel-Wissenschaft Und-technology, 30, pp. 324-329 
504 |a Terebiznik, M., Pilosof, A.M.R., Moreno, S., Effective purification ofAspergillus oryzae (1996) Journal of Food Biochemistry, 17, pp. 341-354 
504 |a Smith, B.W., Roe, J.H., A photometric method for the determination of α-amylase in blood and urine, with use of the starch-Iodine color (1949) Journal of Biological Chemistry, 179, pp. 53-58 
504 |a Roos, Y., Karel, M., Plasticizing effect of water on thermal behavior and crystallization of amorphous food models (1991) Journal of Food Science, 56, pp. 38-44 
504 |a Bombara, N., Pilosof, A.M.R., Añon, M.C., Thermal stability of a neutral protease ofAspergillus oryzae (1994) Journal of Food Biochemistry, 18, pp. 31-41 
504 |a Fukada, H., Takashi, K., Differential scanning calorimetric study of the thermal unfolding of Taka-amylase A fromAspergillus oryzae (1987) Biochemistry, 26, pp. 4063-4068 
504 |a Carpenter, J.F., Crowe, L.M., Crowe, J.H., Stabilization of phosphofructokinase with sugars during freeze-drying: Characterization of enhanced protection in the presence of divalent cations (1987) Biochemical and Biophysical Acta, 923, pp. 109-115 
504 |a Carpenter, J.F., Martin, B., Crowe, L.M., Crowe, J.H., Stabilization of phosphofructokinase during air-drying with sugars and sugar/transition metal mixtures (1987) Cryobiology, 24, pp. 455-464 
504 |a Schebor, C., Buera, M.P., Chirife, J., Glassy state in relation to the thermal inactivation of enzyme invertase in amorphous dried matrices of trehalose, maltodextrin and PVP (1996) Journal of Food Engineering, 30. , 269-2?? 
504 |a Roser, B.J., Trehalose drying: A novel replacement for freeze-drying (1991) Biopharmacy, 5, pp. 44-53 
504 |a Karmas, R., (1994) The Effect of Glass Transition on Non-enzymatic Browning in Dehydrated Food Systems, , University of New Jersey, New Brunswick, New Jersey, USA 
504 |a Roos, Y., Karel, M., Phase transitions of mixtures of amorphous polysaccharides and sugars (1991) Biotechnology Progress, 7, pp. 49-53 
504 |a Jeffrey, G.A., Nanni, R., The crystal structure of anhydrous α-α trehalose at -150 °c (1985) Carbohydrate Research, 137, pp. 21-30 
504 |a Labuza, T.P., An integrated approach to food chemistry: Illustrative cases (1985) Food Chemistry, , O.R. Fennema. New York: Marcel Dekker 
504 |a Labuza, T.P., Nutrient losses during drying and storage of dehydrated foods (1972) Critical Reviews in Food Technology, 3, pp. 217-220 
520 3 |a Thermal stability of α-amylase in trehalose matrices of reduced moisture content was studied as affected by phase transitions occurring as a result of increasing temperature at a moisture content of 50 g/kg. Removal of water greatly enhanced thermal stability of α-amylase but when trehalose was present an extraordinary stabilization was achieved. Even in an initially rubbery condition, the protective effect of trehalose could be assessed up to 100 °C. Deactivation kinetics in the range 80-100 °C were related to crystallization of amorphous trehalose which would occur because the system was above the glass transition temperature. According to available water, at most 50% of amorphous trehalose would crystallize. The remaining amorphous trehalose phase would increase its glass transition temperature leading to enhanced enzyme stability. At temperatures close to 90 °C, trehalose dihydrate crystals start melting, releasing water which could promote further trehalose crystallization and enzyme deactivation. Once trehalose crystallizes, the protective effect may be lost since crystalline trehalose forms a separated phase no longer associated with the enzyme. These phase transitions were reflected as breaks in the Arrhenius plots. © 1997 Academic Press Limited.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: The authors acknowledge financial support from the University of Buenos Aires (Secretaría de Ciencia y Técnica), Consejo Nacional de Investigaciones Cientifi-cas y Técnicas de la República Argentina, and International Foundation for Science (Sweden). We thank Dr Marcus Karel for his helpful comments and Dr Jorge Wagner for his technical assistance in DSC measurements. 
593 |a Departamento de Industrias, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428), Buenos Aires, Argentina 
593 |a Depto. de Ing. Química, Universidad de Buenos Aires, (1428), Buenos Aires, Argentina 
690 1 0 |a Α-AMYLASE 
690 1 0 |a PHASE TRANSITIONS 
690 1 0 |a STABILITY 
690 1 0 |a TREHALOSE 
690 1 0 |a ARRHENIUS 
700 1 |a Buera, M.P. 
700 1 |a Pilosof, A.M.R. 
773 0 |d 1997  |g v. 30  |h pp. 513-518  |k n. 5  |p LWT - Food Sci. Technol.  |x 00236438  |w (AR-BaUEN)CENRE-292  |t LWT - Food Science and Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000521006&doi=10.1006%2ffstl.1996.0210&partnerID=40&md5=0e20247ed38e1d5900ebd3d812c6f986  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1006/fstl.1996.0210  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00236438_v30_n5_p513_Terebiznik  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00236438_v30_n5_p513_Terebiznik  |y Registro en la Biblioteca Digital 
961 |a paper_00236438_v30_n5_p513_Terebiznik  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 64170