Free-energy derivatives and structure optimization within quasiharmonic lattice dynamics

A method is presented for the calculation of the gradient of the free energy with respect to all the internal and external degrees of freedom of a periodic crystal. This gradient can be used in conjunction with a static-energy Hessian for efficient geometrical optimization of systems with large unit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Taylor, M.B
Otros Autores: Barrera, G.D, Allan, N.L, Barron, T.H.K
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1997
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05541caa a22006137a 4500
001 PAPER-3108
003 AR-BaUEN
005 20230518203234.0
008 140217s1997 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0000540579 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PRBMD 
100 1 |a Taylor, M.B. 
245 1 0 |a Free-energy derivatives and structure optimization within quasiharmonic lattice dynamics 
260 |c 1997 
270 1 0 |m Taylor, M.B.; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom 
506 |2 openaire  |e Política editorial 
504 |a Born, M., Huang, K., (1954) Dynamical Theory of Crystal Lattices, , Oxford University Press, Oxford 
504 |a Dick, B.G., Overhauser, A.W., (1958) Phys. Rev., 112, p. 90 
504 |a Barrera, G.D., Taylor, M.B., Allan, N.L., Barron, T.H.K., Kantorovich, L.N., Mackrodt, W.C., (1997) J. Chem. Phys., 107, p. 4337 
504 |a Allan, N.L., Braithwaite, M., Cooper, D.L., Mackrodt, W.C., Wright, S.C., (1991) J. Chem. Phys., 95, p. 6792 
504 |a Allan, N.L., Braithwaite, M., Cooper, D.L., Mackrodt, W.C., Fetch, B., (1993) J. Chem. Soc. Faraday Trans., 89, p. 4369 
504 |a Watson, G.W., Tschaufeser, P., Wall, A., Jackson, R.A., Parker, S.C., (1997) Computer Modeling in Inorganic Crystallography, p. 55. , edited by C. R. A. Callow Academic, San Diego 
504 |a Binder, K., Stauffer, D., (1984) Application of the Monte Carlo Method in Statistical Physics, p. 1. , edited by K. Binder Springer-Verlag, Berlin 
504 |a Kantorovich, L.N., (1995) Phys. Rev. B, 51, p. 3520 
504 |a Tolpygo, K.B., (1950) Zh. Eksp. Teor. Fiz., 20, p. 497 
504 |a Maradudin, A.A., Montroll, E.W., Weiss, G.H., Ipatova, I.P., (1971) Theory of Lattice Dynamics in the Harmonic Approximation, , Academic, New York 
504 |a Nye, J.F., (1985) Physical Properties of Crystals, 2nd Ed., , Clarendon, Oxford 
504 |a Barron, T.H.K., Gibbons, T.G., Munn, R.M., (1971) J. Phys. C, 4, p. 2805 
504 |a Pippard, A.B., (1957) The Elements of Classical Thermodynamics, , Cambridge University Press, Cambridge 
504 |a Callow, C.R.A., Mackrodt, W.C., (1982) Lecture Notes in Physics, 166, p. 7. , Computer Simulation of Solids, edited by C. R. A. Callow and W. C. Mackrodt, Springer-Verlag, Berlin 
504 |a Allan, N.L., Barron, T.H.K., Bruno, J.A.O., (1996) J. Chem. Phys., 105, p. 8300 
504 |a Gill, P.E., Murray, W., Wright, M.H., (1981) Practical Optimization, , Academic, London 
504 |a Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (1989) Numerical Recipes: The Art of Scientific Computing, , Cambridge University Press, Cambridge 
504 |a Venkataraman, G., Feldkamp, L.A., Sahni, V.C., (1975) Dynamics of Perfect Crystals, , MIT, Cambridge 
504 |a Chadi, D.J., Cohen, M.L., (1973) Phys. Rev. B, 8, p. 5747 
504 |a Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B, 13, p. 5188 
504 |a Davies, P.C.W., Betts, D.S., (1994) Quantum Mechanics, , Chapman and Hall, London 
504 |a Ziman, J.M., (1964) Principles of the Theory of Solids, , Cambridge University Press, Cambridge 
504 |a Taylor, M.B., Barrera, G.D., Allan, N.L., Barron, T.H.K., Mackrodt, W.C., unpublishedTaylor, M.B., Barrera, G.D., Allan, N.L., Barron, T.H.K., Mackrodt, W.C., Farad. Discuss., , to be published 
520 3 |a A method is presented for the calculation of the gradient of the free energy with respect to all the internal and external degrees of freedom of a periodic crystal. This gradient can be used in conjunction with a static-energy Hessian for efficient geometrical optimization of systems with large unit cells. The free energy is calculated using lattice statics and lattice dynamics in the quasiharmonic approximation, and its derivatives by means of first-order perturbation theory. In the present application of the method, particles are assumed to interact via arbitrary short-ranged spherically-symmetric pair potentials and long-ranged Coulomb forces, and polarizability effects are accounted for by use of the shell model. The method can be used directly as the basis for a computer program which makes efficient use of both storage and CPU time, especially for large unit cells. Detailed expressions for all the lattice sums are presented.  |l eng 
593 |a School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom 
593 |a Universidad de Buenos Aires, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina 
700 1 |a Barrera, G.D. 
700 1 |a Allan, N.L. 
700 1 |a Barron, T.H.K. 
773 0 |d 1997  |g v. 56  |h pp. 14380-14390  |k n. 22  |p Phys. Rev. B Condens. Matter Mater. Phys.  |x 01631829  |w (AR-BaUEN)CENRE-397  |t Physical Review B - Condensed Matter and Materials Physics 
856 4 1 |u http://www.scopus.com/inward/record.url?eid=2-s2.0-0000540579&partnerID=40&md5=40ee160893aa5e6575cfb096ef4d6732  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01631829_v56_n22_p14380_Taylor  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01631829_v56_n22_p14380_Taylor  |y Registro en la Biblioteca Digital 
961 |a paper_01631829_v56_n22_p14380_Taylor  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 64061