Sorbate destruction and non-enzymatic browning in model aqueous systems

The effect of system composition on sorbate destruction and sensory damage due to non-enzy matic browning was studied in aqueous model systems with a water activity (a w) of 0.91 and a pH of 5.0-6.0. The rate constants of sorbate destruction could be described by first order kinetics and those from...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Campos, C.A
Otros Autores: Alzamora, S.M, Gerschenson, L.N
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 1997
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07002caa a22006257a 4500
001 PAPER-3059
003 AR-BaUEN
005 20230518203232.0
008 190411s1997 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0031482360 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Campos, C.A. 
245 1 0 |a Sorbate destruction and non-enzymatic browning in model aqueous systems 
246 3 1 |a Destruccion de sorbatos y pardeamiento no enzimático en sistemas modelo acuosos 
260 |c 1997 
270 1 0 |m Alzamora, S.M.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a (1980) Official Methods of Analysis, , 13th edn. Washington, DC: Association of Official Analytical Chemists 
504 |a Arya, S.S., Stability of sorbic acid in aqueous solutions (1980) Journal of Agriculture and Food Chemistry, 28, pp. 1246-1249 
504 |a Buera, M.P., Chirife, J., Resnik, S., Lozano, R., Estudio comparativo de la reactividad de diferentes azúcares frente a las reacciones de pardeamiento no enzimático en sistemas modelo líquidos de alta actividad acuosa (1984) Segundo Simposio de Color en Alimentos, , Buenos Aires 
504 |a Campos, C.A., Gerschenson, L.N., Alzamora, S.M., Effect of system composition on sorbates stability in aqueous model systems of reduced water activity (1993) 53rd Annual Meeting of Institute of Food Technologists, , 16 June, Chicago, IL 
504 |a Chirife, J., Resnik, S., Unsaturated solutions as reference sources of water activity at various temperatures (1984) Journal of Food Science, 49, pp. 1486-1488 
504 |a Gerschenson, L.N., Alzamora, S.M., Chirife, J., Stability of sorbic acid in model food systems of reduced water activity: sugar solutions (1986) Journal of Food Science, 51, pp. 1028-1031 
504 |a Gerschenson, L.N., Alzamora, S.M., Chirife, J., Effect of sodium chloride and glycerol on the stability of sorbic acid solutions at reduced water activity (1987) Lebensmittel Wissenschaft und Technologie, 20, pp. 98-100 
504 |a Guerrero, S., Alzamora, S.M., Gerschenson, L.N., Stability of sorbic acid in aqueous solutions of sodium chloride (1990) Lebensmittel Wissenscahft und Technologie, 23, pp. 271-273 
504 |a Labuza, T.P., Kamman, J.K., Reaction kinetics and accelerated tests simulation as a function of temperature (1983) Computer Aided Techniques in Food Technology, pp. 71-115. , In: Saguy I. (ed.), New York: Marcel Deckker Inc 
504 |a Labuza, T.P., Riboh, D., Theory and application of Arrhenius kinetics to the prediction of nutrient losses in foods (1982) Food Technology, 36, pp. 66-72 
504 |a Ledward, D.A., Intermediate moisture meats (1981) Developments in Meat Science II, pp. 157-192. , London: Elsevier Applied Science Publishers 
504 |a Mahoney, J.R., Graf, E., Role of alpha-tocopherol, ascorbic acid, citric acid and EDTA as oxidants in model systems (1986) Journal of Food Science, 51, pp. 1293-1296 
504 |a McCarthy, T.J., Eagler, P.F.K., Further studies on glass-stored sorbic acid solutions (1976) Cosmet Toiletries, 91, pp. 33-35 
504 |a Obanu, Z.A., Ledward, D.A., Lawrie, R.A., Reactivity of glycerol in intermediate moisture meats (1977) Meat Science, 1, pp. 177-183 
504 |a Robach, M.C., Stateler, C.L., Inhibition of Staphylococcus aureus by potassium sorbate in combination with sodium chloride, tertiary butylhydroquinone, butylated hydroxyanisole or ethylendiamine tetracetic acid (1980) Journal of Food Protection, 43, pp. 208-211 
504 |a Seow, C.C., Cheah, P.B., Kinetics of degradation of sorbic acid in aqueous glycerol solutions (1985) Food Chemistry, 17, pp. 95-103 
504 |a Seow, C.C., Cheah, P.B., Reactivity of sorbic acid and glycerol in nonenzymatic browning in liquid intermediate moisture model systems (1985) Food Chemistry, 18, pp. 71-80 
504 |a Sofos, J.N., Busta, F.F., Antimicrobial activity of sorbate (1981) Journal of Food Protection, 44, pp. 614-623 
504 |a Sokal, R.R., Rohlf, F.J., (1969) Biometry. The Principles and Practice of Statistics in Biological Research, pp. 156-189. , San Francisco: W.H. Freeman and Company 
504 |a Thakur, B.R., Arya, S.S., Role of sorbic acid in nonenzymatic browning in liquid and solid model food systems (1991) International Journal of Food Science and Technology, 26, pp. 157-164 
504 |a Vidyasagar, K., Arya, S.S., Stability of sorbic acid in orange squash (1983) Journal Agricultural and Food Chemistry, 31, pp. 1262-1264 
504 |a Vidyasagar, K., Arya, S.S., Degradation of sorbic acid in fruit squashes and fish paste (1984) Journal of Food Technology, 19, pp. 447-454 
520 3 |a The effect of system composition on sorbate destruction and sensory damage due to non-enzy matic browning was studied in aqueous model systems with a water activity (a w) of 0.91 and a pH of 5.0-6.0. The rate constants of sorbate destruction could be described by first order kinetics and those from non-enzymatic browning by zero order kinetics. Both reactions were found to be related not only to temperature and pH but also to the humectants (NaCl, glycerol) used to depress a w. A higher preservative retention and a smaller amount of browning was produced by the use of a mixture of 35.0 g/kg of NaCl and 220.0 g/kg of glycerol as a humectant instead of one of them alone, citric acid instead of phosphoric acid as the acidifying agent, and glass flasks instead of polyethylene containers. The non-enzymatic browning reactions were greatly influenced by sorbic acid destruction. The inclusion of glycine was responsible for the enhanced sorbate destruc tion and browning development. © 1997, Sage Publications. All rights reserved.  |l eng 
593 |a Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina 
690 1 0 |a BROWNING 
690 1 0 |a SORBATES 
690 1 0 |a STABILITY 
700 1 |a Alzamora, S.M. 
700 1 |a Gerschenson, L.N. 
773 0 |d 1997  |g v. 3  |h pp. 405-411  |k n. 6  |p Food Sci. Technol. Int.  |x 10820132  |t Food Science and Technology International 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031482360&doi=10.1177%2f108201329700300602&partnerID=40&md5=050c55388979959fcad00a518e4837bb  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1177/108201329700300602  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10820132_v3_n6_p405_Campos  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10820132_v3_n6_p405_Campos  |y Registro en la Biblioteca Digital 
961 |a paper_10820132_v3_n6_p405_Campos  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 64012