Algebraic relations between Dyson and Liouvillian self-energy field approaches

Through the superoperator algebraic formalism it is shown that Liouvillian self-energies derived from the equations of motion hierarchy for two-time propagators in stationary states of time independent Hamiltonians of N-particle systems are closely related to those obtained from the solution of the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bochicchio, Roberto Carlos
Otros Autores: Grinberg, Horacio
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 1998
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07345caa a22009017a 4500
001 PAPER-2978
003 AR-BaUEN
005 20250428085014.0
008 190411s1998 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0001883312 
030 |a THEOD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bochicchio, Roberto Carlos 
245 1 0 |a Algebraic relations between Dyson and Liouvillian self-energy field approaches 
260 |b Elsevier  |c 1998 
270 1 0 |m Bochicchio, R.C.; Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, (1428), Buenos Aires, Argentina 
504 |a Mattuck, R.D., (1967) A Guide to Feynman Diagrams in the Many-body Problem, , McGraw-Hill, New York 
504 |a Fetter, A.L., Walecka, J.D., (1966) Quantum Theory of Many Particle Systems, , McGraw-Hill, New York 
504 |a March, N.H., Young, W.H., Sampanthar, S., (1967) The Many-body Problem in Quantum Mechanics, , Cambridge University, Cambridge 
504 |a Ziman, J., (1969) Elements of Advanced Quantum Theory, , Cambridge Univ. Press, Cambridge 
504 |a Abrikosov, A.A., Gorkov, L.P., Dzyaloshinski, I.E., (1963) Methods of Quantum Field Theory in Statistical Physics, , Prentice-Hall, Englewood Cliffs, NJ 
504 |a Nozières, P., (1964) Interacting Fermi Systems, , Benjamin, New York 
504 |a Feynman, R.P., (1948) Rev. Mod. Phys., 20, p. 367 
504 |a Feynman, R.P., (1950) Phys. Rev., 80, p. 440 
504 |a Feynman, R.P., (1951) Phys. Rev., 84, p. 108 
504 |a Dyson, F.J., (1949) Phys. Rev., 75, pp. 486-1736 
504 |a Schwinger, J., (1951) Proc. Natl. Acad. Sci. US, 37, p. 452 
504 |a Barrett, B.R., (1968) Nucl. Phys. A, 109, p. 129 
504 |a Csanak, G., Taylor, H.S., Yaris, R., (1971) Adv. At. Mol. Phys., 7, p. 287 
504 |a Linderberg, J., Öhrn, Y., (1973) Propagators in Quantum Chemistry, , Academic, London 
504 |a Jørgensen, P., (1975) Annu. Rev. Phys. Chem., 26, p. 359 
504 |a Simons, J., (1977) Annu. Rev. Phys. Chem., 28, p. 15 
504 |a Paldus, J.P., Cizek, J., (1975) Adv. Quantum Chem., 9, p. 106 
504 |a Cederbaum, L.S., Domcke, W., (1977) Adv. Chem. Phys., 36, p. 205 
504 |a Tsui, F.S.M., Freed, K.F., (1978) Chem. Phys., 14, p. 44 
504 |a Martin, P.C., Schwinger, J., (1959) Phys. Rev., 115, p. 1342 
504 |a Migdal, A.B., (1967) Theory of Finite Fermi Systems, , Wiley-Interscience, New York 
504 |a Salpeter, E.E., Bethe, H.A., (1951) Phys. Rev., 84, p. 1232 
504 |a Rowe, D.J., (1968) Rev. Mod. Phys., 40, p. 153 
504 |a McCurdy, C.W., Rescigno, T.N., Yeager, D.L., McKoy, V., (1977) Methods of Electronic Structure Theory, , H.F. Schaefer (Ed.), Plenum, New York 
504 |a Goscinski, O., Lukman, B., (1970) Chem. Phys. Lett., 7, p. 573 
504 |a Oddershede, J., (1978) Adv. Quantum Chem., 11, p. 275 
504 |a Schirmer, J., (1982) Phys. Rev. A, 26, p. 2395 
504 |a Jørgensen, P., Simons, J., (1981) Second Quantization Based Methods in Quantum Chemistry, , Wiley-Intersdence, New York 
504 |a Pickup, B.T., Goscinski, O., (1973) Mol. Phys., 26, p. 1013 
504 |a Girardeau, M.D., (1983) Phys. Rev. A, 28, p. 1056 
504 |a Bochicchio, R.C., Grinberg, H., (1990) Chem. Phys. Lett., 236, p. 169 
504 |a Bochicchio, R.C., Grinberg, H., to be published; Mertins, I., Schirmer, J., (1996) A. Tarantelli Phys. Rev. A, 53, p. 2153 
504 |a Zubarev, N., (1960) Sov. Phys. Usp., 3, p. 320 
504 |a Zubarev, N., (1974) Non-equilibrium Statistical Thermodynamics, , Consultants Bureau, New York 
504 |a Born, G., Öhm, Y., (1978) Int. J. Quantum Chem., S12, p. 143 
504 |a Öhrn, Y., Born, G., (1981) Adv. Quantum Chem., 13, p. 1 
504 |a Kumar, K., (1967) J. Math. Phys., 6, p. 2063 
504 |a McWeeny, R., Pickup, B.T., (1980) Rep. Progr. Phys., 43, p. 68 
504 |a Bochicchio, R.C., Ferraro, M.B., Grinberg, H., Cavasotto, C.N., (1995) J. Mol. Struct. (Theochem), 335, p. 1 
504 |a Jørgensen, J., Oddershede, J., (1977) J. Chem. Phys., 66, p. 1541 
504 |a Löwdin, P.O., (1982) Int. J. Quantum Chem., 21, p. 69 
504 |a Löwdin, P.O., (1982) Int. J. Quantum Chem., 21, p. 275 
504 |a Bochicchio, R.C., Grinberg, H., (1995) J. Mol. Struct. (Theochem), 330, p. 113 
506 |2 openaire  |e Política editorial 
520 3 |a Through the superoperator algebraic formalism it is shown that Liouvillian self-energies derived from the equations of motion hierarchy for two-time propagators in stationary states of time independent Hamiltonians of N-particle systems are closely related to those obtained from the solution of the super-operator approach to Dyson equations (Dyson self-energies). It probes the quasi-equivalence of the two formulae, namely, they are equivalent to lower orders in the perturbative series expansion, a result valid for any kind of reference state used in the evaluation of the propagators leading to the self-energy fields. The relations obtained for the one-particle propagator are generalized to p-particle propagators (p < N). Thus, it shows the existence, as in the case of one-particle propagators, of Dyson like equations and consequently that the Liouvillian formulation is adequate to solve the decoupling problem in many-body physics allowing extensions to be made to other related fields such as the solution of the reduced Liouville quantum equation. © 1998 Elsevier Science B.V.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, EX-006 
536 |a Detalles de la financiación: This work has been made possible by research grants in aid from the University of Buenos Aires (Project No EX-006), the Consejo National de Investigaciones Cientificas y Tecnicas, Republica Argentina and Agencia National de Promoaon Cientifica y Tecnologica, Project No. PMT-PICI0148. The authors are grateful to the Departament of Physics, Facultad de Ciencias Exactas y Naturales, Uni-versidad de Buenos Aires, for facilities provided during the course of this work. 
593 |a Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, (1428), Buenos Aires, Argentina 
690 1 0 |a DYSON EQUATION 
690 1 0 |a EQUATION OF MOTION 
690 1 0 |a LIOUVILLIAN SELF-ENERGIES 
690 1 0 |a PROPAGATORS 
700 1 |a Grinberg, Horacio 
773 0 |d Elsevier, 1998  |g v. 426  |h pp. 9-16  |k n. 1-3  |p J. Mol. Struct. THEOCHEM  |x 01661280  |w (AR-BaUEN)CENRE-1043  |t Journal of Molecular Structure: THEOCHEM 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0001883312&doi=10.1016%2fS0166-1280%2897%2900302-3&partnerID=40&md5=59144efc05ae4f9fc57a4413048f1bfe  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/S0166-1280(97)00302-3  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01661280_v426_n1-3_p9_Bochicchio  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01661280_v426_n1-3_p9_Bochicchio  |y Registro en la Biblioteca Digital 
961 |a paper_01661280_v426_n1-3_p9_Bochicchio  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 63931