An electrochemical impedance and spectroelectrochemical study of the polypyrrole-flavin composite electrode

Electrodes modified with polypyrrole-flavin mononucleotide composite film (PPy-FMN) have been studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and UV-visible spectro-electrochemistry with optically transparent electrodes (OTE). Flavin molecules, electrostatically trap...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonazzola, C.
Otros Autores: Calvo, E.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 1998
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07818caa a22009377a 4500
001 PAPER-2931
003 AR-BaUEN
005 20230518203224.0
008 190411s1998 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0032093781 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JECHE 
100 1 |a Bonazzola, C. 
245 1 3 |a An electrochemical impedance and spectroelectrochemical study of the polypyrrole-flavin composite electrode 
260 |b Elsevier  |c 1998 
270 1 0 |m Calvo, E.J.; Depto. Quim. Inorg., Analitica Quim., Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon 2, AR-1428 Buenos Aires, Argentina; email: calvo@nahuel.q1.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Hemmerich, P., Veeger, C., Wood, A.C.S., (1965) Angew. Chem. Int. Ed. Engl., 4, p. 671 
504 |a Walsh, C., (1980) Acc. Chem. Res., 13, p. 148 
504 |a Ksenzhek, O.S., Petrova, S.A., (1983) Bioelectrochem. Bioenerg., 11, p. 105 
504 |a Reeves, J.H., Weiss, O.K., (1987) J. Electroanal. Chem., 217, p. 65 
504 |a Durliat, H., Comtat, M., (1987) J. Biol. Chem., 262, p. 11497 
504 |a Durliat, H., Barrau, M.B., Comtat, M., (1988) Bioelectrochem. Bioenerg., 19, p. 413 
504 |a Birss, V.I., Elzanowska, H., Turner, R.A., (1988) Can. J. Chem., 66, p. 86 
504 |a Xu, J., Birke, R.L., Lombardi, J.R., (1987) J. Am. Chem. Soc., 109, p. 5645 
504 |a Durfor, C.N., Yensen, B.A., Bowers, M.L., (1988) J. Electroanal. Chem., 244, p. 287 
504 |a Wingard, L., (1982) Bioelectrochem. Bioenerg., 9, p. 307 
504 |a Narasimhan, K., Wingard L.B., Jr., (1986) J. Mol. Catal., 34, p. 263 
504 |a Edwards, T.R.G., Cunnane, V.J., Parsons, R., Gani, D., (1989) J. Chem. Soc. Chem. Commun., 15, p. 1041 
504 |a Ueyama, S., Isoda, S., Maeda, M., (1989) J. Electroanal. Chem., 264, p. 149 
504 |a Cosnier, S., Innocent, C., (1992) J. Electroanal. Chem., 338, p. 339 
504 |a Lyons, M.E.G., (1994) Electroactive Polymer Electrochemistry, Part 1, Fundamentals, , Plenum, New York 
504 |a Battaglini, F., Bonazzola, C., Calvo, E.J., (1991) J. Electroanal. Chem., 309, p. 347 
504 |a Castro, P.A., Vago, E.R., Calvo, E.J., (1996) J. Chem. Soc. Faraday Trans., 92, p. 3371 
504 |a Genies, H.M., Pernault, J.M., (1985) J. Electroanal. Chem., 191, p. 111 
504 |a Kaufman, J.H., Colaneri, N., Scott, J.C., Street, G.B., (1984) Phys. Rev. Lett., 53, p. 1005 
504 |a Son, Y., Rajeshwar, K., (1992) J. Chem. Soc. Faraday Trans., 88, p. 605 
504 |a Beinert, H., (1956) J. Am. Chem. Soc., 78, p. 5323 
504 |a Draper, R., Ingraham, L., (1968) Arch. Biochem. Biophys., 125, p. 802 
504 |a Oudart, J.F., Allendoerfer, R.D., Osteryoung, R.A., (1988) J. Electroanal. Chem., 241, p. 231 
504 |a Lang, G., Bácskai, J., Inzelt, G., (1993) Electrochim. Acta, 38, p. 773 
504 |a Albery, W.J., Chen, Z., Horrocks, B.R., Mount, A.R., Wilson, P.J., Bloor, D., Monkman, A.T., Elliott, C.M., (1989) Faraday Discuss. Chem. Soc., 88, p. 247 
504 |a Vorotyntsev, M.A., Daikhin, L.I., Levi, M.D., (1994) J. Electroanal. Chem., 364, p. 37 
504 |a Armstrong, R.D., (1986) J. Electroanal. Chem., 198, p. 177 
504 |a Boukamp, B.A., (1989) Equivalent Circuit Users Manual, , University of Twente 
504 |a Inzelt, G., (1994) Electroanalytical Chemistry: A Series of Advances, 18. , A.J. Bard (Ed.), Marcel Dekker Inc., NY 
504 |a Krishna, V., Ho, Y.H., Basak, S., Rajeshwar, K., (1991) J. Am. Chem. Soc., 113, p. 3325 
504 |a Warren, L.F., Walker, J.A., Anderson, D.P., Rhodes, C.G., Buckley, L.J., (1989) J. Electrochem. Soc., 136, p. 2286 
504 |a Wynne, K.J., Street, G.B., (1985) Macromolecules, 18, p. 2361 
520 3 |a Electrodes modified with polypyrrole-flavin mononucleotide composite film (PPy-FMN) have been studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and UV-visible spectro-electrochemistry with optically transparent electrodes (OTE). Flavin molecules, electrostatically trapped in the composite film, act as dopant anions and can be reduced chemically by reduced PPy0 or electrochemically with a conducting PPy backbone connecting them to the underlying electrode. Both the electrochemistry and the electronic spectra of FMN entrapped in the PPy film markedly differ from those of FMN in aqueous solutions. These differences arise from the interactions of flavin molecules in a rigid matrix and the possibility of both chemical reduction of FMN by reduced PPy0 and flavin electro-reduction in the host polymer matrix. © 1998 Elsevier Science S.A. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACyT Ex-049 
536 |a Detalles de la financiación: The authors wish to give thanks for financial support from the University of Buenos Aires (UBACyT Ex-049) and to Mr. Ariel Weiss for help with programming. Appendix A Here we show that the parabolic second-order differential Eq. (11) with a source/sink term ( k f c ), can be reduced to a pure diffusion differential equation by defining a corrected concentration due to the linear kinetics as: (A1) (x,t)=c(x,t) c ̃ e −k f and therefore Eq. (11) becomes (A2) ∂ c ̃ ∂t =D ∂ 2 c ̃ ∂x 2 which, after linearization in terms of the modulated concentration, (A3) (ω)= c ̃ Δ c ̃ e ( j ω− k f )t yields Eq. (12) , identical to Eq. (22) in Ref. [24] (A4) = j ω′ D Δ c ̃ ∂ 2 Δ c ̃ ∂x 2 with s ′=(j ω ′/ D ) 1/2 . Note, however, that in Eq. (A4) there is a shift of frequency in the complex plane due to the kinetic correction of the concentration variable and ω ′= ω −j k f with | ω ′|=( ω 2 + k f 2 ) 1/2 . From Eq. (29) of Inzelt et al. [24] with C A =0 and R A =0: (A5) Z Q =σω −1/2 (1− j ) k f (1− coth 2 (s′L)) Ds′+k f coth (s′L) and (A6) Z D =σω −1/2 (1− j ) coth (s′L) Thus the total Faradaic impedance results: (A7) Z F =R ct +Z D +Z Q 
593 |a Depto. Quim. Inorg., Analitica Quim., Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon 2, AR-1428 Buenos Aires, Argentina 
690 1 0 |a CYCLIC VOLTAMMETRY 
690 1 0 |a DOPANT ANIONS 
690 1 0 |a ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 
690 1 0 |a OPTICALLY TRANSPARENT ELECTRODES 
690 1 0 |a POLYPYRROLE-FLAVIN MONONUCLEOTIDE COMPOSITE FILM 
690 1 0 |a UV-VISIBLE SPECTRO-ELECTROCHEMISTRY 
690 1 0 |a AROMATIC POLYMERS 
690 1 0 |a CHEMICAL MODIFICATION 
690 1 0 |a CYCLIC VOLTAMMETRY 
690 1 0 |a ELECTROSTATICS 
690 1 0 |a MOLECULAR STRUCTURE 
690 1 0 |a NITROGEN COMPOUNDS 
690 1 0 |a SOLUTIONS 
690 1 0 |a SPECTROSCOPY 
690 1 0 |a FLAVIN 
690 1 0 |a OPTICALLY TRANSPARENT ELECTRODES 
690 1 0 |a POLYPYRROLE 
690 1 0 |a ELECTROCHEMICAL ELECTRODES 
700 1 |a Calvo, E.J. 
773 0 |d Elsevier, 1998  |g v. 449  |h pp. 111-119  |k n. 1-2  |p J Electroanal Chem  |x 15726657  |t Journal of Electroanalytical Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032093781&doi=10.1016%2fS0022-0728%2898%2900047-3&partnerID=40&md5=198e32fa694a92717dd53d38a14f9628  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/S0022-0728(98)00047-3  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15726657_v449_n1-2_p111_Bonazzola  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15726657_v449_n1-2_p111_Bonazzola  |y Registro en la Biblioteca Digital 
961 |a paper_15726657_v449_n1-2_p111_Bonazzola  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 63884