Estimating model evidence using ensemble-based data assimilation with localization – The model selection problem

In recent years, there has been increased interest in applying data assimilation (DA) methods, originally designed for state estimation, to the model selection problem. In this setting, previous studies introduced the contextual formulation of model evidence, or contextual model evidence (CME), and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Metref, S.
Otros Autores: Hannart, A., Ruiz, Juan José, Bocquet, M., Carrassi, A., Ghil, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Ltd 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16770caa a22014177a 4500
001 PAPER-25864
003 AR-BaUEN
005 20250925095340.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85063301813 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Metref, S. 
245 1 0 |a Estimating model evidence using ensemble-based data assimilation with localization – The model selection problem 
260 |b John Wiley and Sons Ltd  |c 2019 
270 1 0 |m Metref, S.; IFAECI, CNRS-CONICET-UBAArgentina; email: sammy.metref@cima.fcen.uba.ar 
504 |a Akaike, H., A new look at the statistical model identification (1974) IEEE Transactions on Automatic Control, 19, pp. 716-723 
504 |a Ando, T., (2010) Bayesian Model Selection and Statistical Modeling, , Boca Raton, FL, CRC Press 
504 |a Asch, M., Bocquet, M., Nodet, M., (2016) Data Assimilation: Methods, Algorithms, and Applications, , Philadelphia, PA, SIAM 
504 |a Balgovind, R., Dalcher, A., Ghil, M., Kalnay, E., A stochastic-dynamic model for the spatial structure of forecast error statistics (1983) Monthly Weather Review, 111, pp. 701-722 
504 |a Baum, L.E., Petrie, T., Soules, G., Weiss, N., A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains (1970) The Annals of Mathematical Statistics, 41, pp. 164-171 
504 |a Bennett, A.F., (1992) Inverse Methods in Physical Oceanography, , Cambridge, Cambridge University Press 
504 |a Bishop, C.H., Etherton, B.J., Majumdar, S.J., Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects (2001) Monthly Weather Review, 129, pp. 420-436 
504 |a Bocquet, M., Localization and the iterative ensemble Kalman smoother (2016) Quarterly Journal of the Royal Meteorological Society, 142, pp. 1075-1089 
504 |a Bocquet, M., Carrassi, A., Four-dimensional ensemble variational data assimilation and the unstable subspace (2017) Tellus A, 69, p. 1304504 
504 |a Bourke, W., A multilevel spectral model. I. Formulation and hemispheric integrations (1974) Monthly Weather Review, 102, pp. 687-701 
504 |a Bracco, A., Kucharski, F., Kallumal, R., Molteni, F., Internal variability, external forcing and climate trends in multi-decadal AGCM ensembles (2004) Climate Dynamics, 23, pp. 659-678 
504 |a Buehner, M., Houtekamer, P.L., Charette, C., Mitchell, H.B., Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: description and single-observation experiments (2010) Monthly Weather Review, 138, pp. 1550-1566 
504 |a Burnham, K.P., Anderson, D.R., (2002) Model Selection and Inference: A Practical Information-Theoretic Approach, , 2nd ed., New York, NY, Springer 
504 |a Carrassi, A., Vannitsem, S., Deterministic treatment of model error in geophysical data assimilation (2016) Mathematical Paradigms of Climate Science, pp. 175-213. , Cham, Springer 
504 |a Carrassi, A., Bocquet, M., Hannart, A., Ghil, M., Estimating model evidence using data assimilation (2017) Quarterly Journal of the Royal Meteorological Society, 143, pp. 866-880 
504 |a Carrassi, A., Bocquet, M., Bertino, L., Evensen, G., Data assimilation in the geosciences: an overview of methods, issues, and perspectives (2018) WIREs Climate Change, 9 
504 |a Carson, J., Crucifix, M., Preston, S., Wilkinson, R.D., Bayesian model selection for the glacial–interglacial cycle (2018) Journal of the Royal Statistical Society: Series C (Applied Statistics), 67, pp. 25-54 
504 |a Cressman, G.P., An operational objective analysis system (1959) Monthly Weather Review, 87, pp. 367-374 
504 |a Daley, R., (1991) Atmospheric Data Analysis, , Cambridge, Cambridge University Press 
504 |a Dee, D.P., On-line estimation of error covariance parameters for atmospheric data assimilation (1995) Monthly Weather Review, 123, pp. 1128-1145 
504 |a Del Moral, P., (2004) Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, , New York, Springer 
504 |a Donner, L.J., Seman, C.J., Hemler, R.S., Fan, S., A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: thermodynamic and hydrological aspects in a general circulation model (2001) Journal of Climate, 14, pp. 3444-3463 
504 |a Elsheikh, A., Hoteit, I., Wheeler, M., Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates (2014) Computer Methods in Applied Mechanics and Engineering, 269, pp. 515-537 
504 |a Elsheikh, A., Wheeler, M., Hoteit, I., Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems (2014) Journal of Computational Physics, 258, pp. 319-337 
504 |a Evensen, G., (2009) Data Assimilation: The Ensemble Kalman Filter, , 2nd ed., Berlin, Springer-Verlag 
504 |a Gaspari, G., Cohn, S.E., Construction of correlation functions in two and three dimensions (1999) Quarterly Journal of the Royal Meteorological Society, 125, pp. 723-757 
504 |a Ghil, M., Advances in sequential estimation for atmospheric and oceanic flows (1997) Journal of the Meteorological Society of Japan, 75, pp. 289-304 
504 |a Ghil, M., Malanotte-Rizzoli, P., Data assimilation in meteorology and oceanography (1991) Advances in Geophysics, 33, pp. 141-266 
504 |a Ghil, M., Halem, M., Atlas, R., Time-continuous assimilation of remote-sounding data and its effect on weather forecasting (1979) Monthly Weather Review, 107, pp. 140-171 
504 |a Gini, C., Measurement of inequality of incomes (1921) The Economic Journal, 31, pp. 124-126 
504 |a Greybush, S.J., Kalnay, E., Miyoshi, T., Ide, K., Hunt, B.R., Balance and ensemble Kalman filter localization techniques (2011) Monthly Weather Review, 139, pp. 511-522 
504 |a Haarsma, R.J., Campos, E.J.D., Molteni, F., Atmospheric response to South Atlantic SST dipole (2003) Geophysical Research Letters, 30, p. 1864 
504 |a Hamill, T.M., Whitaker, J.S., Snyder, C., Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter (2001) Monthly Weather Review, 129, pp. 2776-2790 
504 |a Hannart, A., Carrassi, A., Bocquet, M., Ghil, M., Naveau, P., Pulido, M., Ruiz, J., Tandeo, P., DADA: data assimilation for the detection and attribution of weather and climate-related events (2016) Climatic Change, 136, pp. 155-174 
504 |a Hannart, A., Pearl, J., Otto, F.E.L., Naveau, P., Ghil, M., Causal counterfactual theory for the attribution of weather and climate-related events (2016) Bulletin of the American Meteorological Society, 97, pp. 99-110 
504 |a Harlim, J., Model error in data assimilation (2017) Nonlinear and Stochastic Climate Dynamics, pp. 276-317. , In C.L.E. Franzke and T.J. O'Kane (Eds.),, Cambridge, Cambridge University Press 
504 |a Houtekamer, P.L., Mitchell, H.L., A sequential ensemble Kalman filter for atmospheric data assimilation (2001) Monthly Weather Review, 129, pp. 123-137 
504 |a Hunt, B., Kostelich, E.J., Szunyogh, I., Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter (2007) Physica D, 230, pp. 112-126 
504 |a Ide, K., Courtier, P., Ghil, M., Lorenc, A., Unified notation for data assimilation: operational, sequential and variational (1997) Journal of the Meteorological Society of Japan, 75, pp. 181-189 
504 |a Kalnay, E., (2003) Atmospheric Modeling, Data Assimilation and Predictability, , Cambridge, Cambridge University Press 
504 |a Kucharski, F., Molteni, F., On non-linearities in a forced North Atlantic Oscillation (2003) Climate Dynamics, 21, pp. 677-687 
504 |a Kucharski, F., Molteni, F., Bracco, A., Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation (2006) Climate Dynamics, 26, pp. 79-91 
504 |a Lermusiaux, P.F.J., Uncertainty estimation and prediction for interdisciplinary ocean dynamics (2006) Journal of Computational Physics, 217, pp. 176-199 
504 |a Lorenz, E.N., Deterministic nonperiodic flow (1963) Journal of the Atmospheric Sciences, 20, pp. 130-141 
504 |a Lorenz, E.N., (1995) Predictability: a problem partly solved. In: Seminar on Predictability, 4–8 September 1995, Shinfield Park, UK, Reading: ECMWF. 
504 |a Lorenz, E.N., Emanuel, K.A., Optimal sites for supplementary weather observations: simulation with a small model (1998) Journal of the Atmospheric Sciences, 55, pp. 399-414 
504 |a Metz, C.E., Basic principles of ROC analysis (1978) Seminars in Nuclear Medicine, 8, pp. 283-298 
504 |a Molteni, F., Atmospheric simulations using a GCM with simplified physical parameterizations. I: model climatology and variability in multi-decadal experiments (2003) Climate Dynamics, 20, pp. 175-191 
504 |a Miyoshi, T., (2005) Ensemble Kalman filter experiments with a primitive-equation global model. PhD Dissertation, University of Maryland. 
504 |a Miyoshi, T., Yamane, S., Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution (2007) Monthly Weather Review, 135, pp. 3841-3861 
504 |a Miyoshi, T., Yamane, S., Enomoto, T., Localizing the error covariance by physical distances within a local ensemble transform Kalman filter (LETKF) (2007) Scientific Online Letters on the Atmosphere, 3, pp. 89-92 
504 |a Navon, I.M., Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography (1997) Dynamics of Atmospheres and Oceans, 27, pp. 55-79 
504 |a Neelin, J.D., Bracco, A., Luo, H., McWilliams, J.C., Meyerson, J.E., Considerations for parameter optimization and sensitivity in climate models (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 21349-21354 
504 |a Otsuka, S., Miyoshi, T., A Bayesian optimization approach to multimodel ensemble Kalman filter with a low-order model (2015) Monthly Weather Review, 143, pp. 2001-2012 
504 |a Ott, E., Hunt, B.R., Szunyogh, I., Corazza, M., Kalnay, E., Patil, D.J., Yorke, J.A., Kostelich, E.J., (2002) Exploiting local low dimensionality of the atmospheric dynamics for efficient ensemble Kalman filtering 
504 |a Ott, E., Hunt, B.R., Szunyogh, I., Zimin, A.V., Kostelich, E.J., Corazza, M., Kalnay, E., Yorke, A., A local ensemble Kalman filter for atmospheric data assimilation (2004) Tellus A, 56, pp. 415-428 
504 |a Raanes, P.N., Carrassi, A., Bertino, L., Extending the square root method to account for additive forecast noise in ensemble methods (2015) Monthly Weather Review, 143, pp. 3857-3873 
504 |a Reich, S., Cotter, C., (2015) Probabilistic Forecasting and Bayesian Data Assimilation, , Cambridge, Cambridge University Press 
504 |a Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Goldberg, M., The NCEP climate forecast system reanalysis (2010) Bulletin of the American Meteorological Society, 91, pp. 1010-1057 
504 |a Saha, S., Shrinivas, M., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Becker, E., The NCEP climate forecast system version 2 (2014) Journal of Climate, 27, pp. 2185-2208 
504 |a Sakov, P., Bertino, L., Relation between two common localisation methods for the EnKF (2011) Computers & Geosciences, 15, pp. 225-237 
504 |a Sakov, P., Counillon, F., Bertino, L., Lisaeter, K.A., Oke, P.R., Korablev, A., TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic (2012) Ocean Science, 8, pp. 633-656 
504 |a Särkkä, S., (2013) Bayesian Filtering and Smoothing, 3. , Cambridge, Cambridge University Press 
504 |a Schwarz, G., Estimating the dimension of a model (1978) The Annals of Statistics, 6, pp. 461-464 
504 |a Szunyogh, I., Kostelich, E.J., Gyarmati, G., Kalnay, E., Hunt, B.R., Ott, E., Satterfield, E., Yorke, J.A., A local ensemble transform Kalman filter data assimilation system for the NCEP global model (2008) Tellus A, 60, pp. 113-130 
504 |a Tiedke, M., A comprehensive mass flux scheme for cumulus parametrization in large-scale models (1993) Monthly Weather Review, 117, pp. 1779-1800 
504 |a Whitaker, J.S., Hamill, T.M., Wei, X., Song, Y., Toth, Z., Ensemble data assimilation with the NCEP global forecast system (2008) Monthly Weather Review, 136, pp. 463-482 
504 |a Winiarek, V., Vira, J., Bocquet, M., Sofiev, M., Saunier, O., Towards the operational estimation of a radiological plume using data assimilation after a radiological accidental atmospheric release (2011) Atmospheric Environment, 45, pp. 2944-2955 
506 |2 openaire  |e Política editorial 
520 3 |a In recent years, there has been increased interest in applying data assimilation (DA) methods, originally designed for state estimation, to the model selection problem. In this setting, previous studies introduced the contextual formulation of model evidence, or contextual model evidence (CME), and showed that CME can be efficiently computed using a hierarchy of ensemble-based DA procedures. Although these studies analysed the DA methods most commonly used for operational atmospheric and oceanic prediction worldwide, they did not study these methods in conjunction with localization to a specific domain. Yet, any application of ensemble DA methods to realistic, very high-dimensional geophysical models requires the implementation of some form of localization. The present study extends CME estimation to ensemble DA methods with domain localization. Domain-localized CME (DL-CME) developed in this article is tested for model selection with two models: (a) the Lorenz 40-variable midlatitude atmospheric dynamics model (Lorenz-95); and (b) the simplified global atmospheric SPEEDY model. CME is compared to the root-mean-square error (RMSE) as a metric for model selection. The experiments show that CME systematically outperforms RMSE in model selection skill, and that this skill improvement is further enhanced by applying localization to the CME estimate using DL-CME. The potential use and range of applications of CME and DL-CME as a model selection metric are also discussed. © 2019 Royal Meteorological Society  |l eng 
593 |a IFAECI, CNRS-CONICET-UBA, Buenos Aires, Argentina 
593 |a CIMA-CONICET, University of Buenos Aires, Buenos Aires, Argentina 
593 |a CEREA, Joint Laboratory École des Ponts ParisTech and EDF R&D, Université Paris-Est, Champs-sur-Marne, France 
593 |a Nansen Environmental and Remote Sensing Center, Bergen, Norway 
593 |a Geosciences Department and Laboratoire de Météorologie Dynamique (CNRS and IPSL), École Normale Supérieure and PSL Research University, Paris, France 
593 |a Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, Afghanistan 
690 1 0 |a CONTEXTUAL MODEL EVIDENCE 
690 1 0 |a DETECTION AND ATTRIBUTION 
690 1 0 |a ENSEMBLE KALMAN FILTER 
690 1 0 |a LOCALIZATION 
690 1 0 |a PARAMETER ESTIMATION 
690 1 0 |a EARTH ATMOSPHERE 
690 1 0 |a METEOROLOGY 
690 1 0 |a PARAMETER ESTIMATION 
690 1 0 |a ATMOSPHERIC DYNAMICS 
690 1 0 |a CONTEXTUAL MODELING 
690 1 0 |a DETECTION AND ATTRIBUTIONS 
690 1 0 |a ENSEMBLE BASED DATA ASSIMILATION 
690 1 0 |a ENSEMBLE KALMAN FILTER 
690 1 0 |a LOCALIZATION 
690 1 0 |a MODEL SELECTION PROBLEM 
690 1 0 |a ROOT MEAN SQUARE ERRORS 
690 1 0 |a MEAN SQUARE ERROR 
700 1 |a Hannart, A. 
700 1 |a Ruiz, Juan José 
700 1 |a Bocquet, M. 
700 1 |a Carrassi, A. 
700 1 |a Ghil, M. 
773 0 |d John Wiley and Sons Ltd, 2019  |p Q. J. R. Meteorol. Soc.  |x 00359009  |w (AR-BaUEN)CENRE-586  |t Quarterly Journal of the Royal Meteorological Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063301813&doi=10.1002%2fqj.3513&partnerID=40&md5=a9896ca8e8a61ab14c178e5e41109ac1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/qj.3513  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00359009_v_n_p_Metref  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00359009_v_n_p_Metref  |y Registro en la Biblioteca Digital 
961 |a paper_00359009_v_n_p_Metref  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86817