Forecasting Multiple Time Series With One-Sided Dynamic Principal Components

We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Peña, D.
Otros Autores: Smucler, E., Yohai, V.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Statistical Association 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09646caa a22007817a 4500
001 PAPER-25862
003 AR-BaUEN
005 20230518205801.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85062355732 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Peña, D. 
245 1 0 |a Forecasting Multiple Time Series With One-Sided Dynamic Principal Components 
260 |b American Statistical Association  |c 2019 
270 1 0 |m Smucler, E.; Department of Mathematics and Statistics, Universidad Torcuato Di Tella, Avenida Figueroa Alcorta 7350, Argentina; email: ezequiels.90@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Ahn, S.K., Reinsel, G.C., “Nested Reduced-rank Autogressive Models for Multiple Time Series,” (1988) Journal of the American Statistical Association, 83, pp. 849-856 
504 |a Amengual, D., Watson, M.W., “Consistent Estimation of the Number of Dynamic Factors in a Large n and t Panel,” (2007) Journal of Business & Economic Statistics, 25, pp. 91-96 
504 |a Bai, J., Ng, S., “Determining the Number of Factors in Approximate Factor Models,” (2002) Econometrica, 70, pp. 191-221 
504 |a Bai, J., Ng, S., “Determining the Number of Primitive Shocks in Factor Models,” (2007) Journal of Business & Economic Statistics, 25, pp. 52-60 
504 |a Box, G.E.P., Tiao, G.C., “A Canonical Analysis of Multiple Time Series,” (1977) Biometrika, 64, p. 355 
504 |a Brillinger, D.R., The Generalization of the Techniques of Factor Analysis, Canonical Correlation and Principal Components to Stationary Time Series (1964) Invited Paper at the Royal Statistical Society Conference in Cardiff, , Wales 
504 |a Brillinger, D.R., “Time Series: Data Analysis and Theory,” (1981) Classics in Applied Mathematics, , San Francisco, CA: Society for Industrial and Applied Mathematics, in 
504 |a Bühlmann, P., Van De Geer, S., (2011) Statistics for High-dimensional Data: Methods, Theory and Applications, , New York: Springer Science & Business Media 
504 |a Connor, G., Korajczyk, R.A., “A Test for the Number of Factors in an Approximate Factor Model,” (1993) The Journal of Finance, 48, pp. 1263-1291 
504 |a Fan, J., Liao, Y., Mincheva, M., “Large Covariance Estimation by Thresholding Principal Orthogonal Complements,” (2013) Journal of the Royal Statistical Society, Series B, 75, pp. 603-680 
504 |a Forni, M., Hallin, M., Lippi, M., Reichlin, L., “The Generalized Dynamic-Factor Model: Identification and Estimation (2000) The Review of Economics and Statistics, 82, pp. 540-554 
504 |a Forni, M., Hallin, M., Lippi, M., Reichlin, L., “The Generalized Dynamic Factor Model: One-sided Estimation and Forecasting,” (2005) Journal of the American Statistical Association, 100, pp. 830-840 
504 |a Forni, M., Giannone, D., Lippi, M., Reichlin, L., “Opening the Black Box: Structural Factor Models with Large Cross Sections,” (2009) Econometric Theory, 25, pp. 1319-1347 
504 |a Forni, M., Hallin, M., Lippi, M., Zaffaroni, P., “Dynamic Factor Models with Infinite-Dimensional Factor Spaces: One-Sided Representations,” (2015) Journal of Econometrics, 185, pp. 359-371 
504 |a Forni, M., Giovannelli, A., Lippi, M., Soccorsi, S., (2016), Dynamic Factor Model with Infinite Dimensional Factor Space: Forecasting, Technical Report DP11161, CEPR; Forni, M., Hallin, M., Lippi, M., Zaffaroni, P., “Dynamic Factor Models with Infinite-Dimensional Factor Space: Asymptotic Analysis,” (2017) Journal of Econometrics, 199, pp. 74-92 
504 |a Garcia-Ferrer, A., Highfield, R.A., Palm, F., Zellner, A., “Macroeconomic Forecasting Using Pooled International Data,” (1987) Journal of Business & Economic Statistics, 5, pp. 53-67 
504 |a Hallin, M., Lippi, M., “Factor Models in High-Dimensional Time Series—a Time-Domain Approach,” (2013) Stochastic Processes and Their Applications, 123, pp. 2678-2695 
504 |a Hallin, M., Liška, R., “Determining the Number of Factors in the General Dynamic Factor Model,” (2007) Journal of the American Statistical Association, 102, pp. 603-617 
504 |a Hyndman, R., Khandakar, Y., “Automatic Time Series Forecasting: The Forecast Package for R,” (2008) Journal of Statistical Software, 27, pp. 1-22 
504 |a Litterman, R.B., “Forecasting with Bayesian Vector Autoregressions: Five Years of Experience,” (1986) Journal of Business & Economic Statistics, 4, pp. 25-38 
504 |a McCracken, M.W., Ng, S., “Fred-md: A Monthly Database for Macroeconomic Research,” (2016) Journal of Business & Economic Statistics, 4, pp. 574-589 
504 |a Onatski, A., “Determining the Number of Factors from Empirical Distribution of Eigenvalues,” (2010) The Review of Economics and Statistics, 92, pp. 1004-1016 
504 |a Peña, D., Box, G.E.P., “Identifying a Simplifying Structure in Time Series,” (1987) Journal of the American Statistical Association, 82, pp. 836-843 
504 |a Peña, D., Poncela, P., “Forecasting with Nonstationary Dynamic Factor Models,” (2004) Journal of Econometrics, 119, pp. 291-321 
504 |a Peña, D., Yohai, V.J., “Generalized Dynamic Principal Components,” (2016) Journal of the American Statistical Association, 111, pp. 1121-1131 
504 |a Poncela, P., Ruiz, E., “More is Not Always Better: Back to the Kalman Filter in Dynamic Factor Models,” (2015) Unobserved Components and Time Series Econometrics, , Koopman S.J., Shephard N.G., (eds), Oxford, UK: Oxford University Press, and, eds 
504 |a Poncela, P., Ruiz, E., “Small-versus Big-data Factor Extraction in Dynamic Factor Models: An Empirical Assessment,” (2016) Dynamic Factor Models, pp. 401-434. , Hillebrand E., Koopman S.J., (eds), Emerald Group Publishing Limited, and, eds 
504 |a Smucler, E., Yohai, V.J., “Robust and Sparse Estimators for Linear Regression Models,” (2017) Computational Statistics & Data Analysis, 111, pp. 116-130 
504 |a Stock, J.H., Watson, M.W., “Forecasting Using Principal Components from a Large Number of Predictors,” (2002) Journal of the American Statistical Association, 97, pp. 1167-1179 
504 |a Tiao, G.C., Tsay, R.S., “Model Specification in Multivariate Time Series,” (1989) Journal of the Royal Statistical Society, Series B, 51, pp. 157-213 
504 |a Tibshirani, R., “Regression Shrinkage and Selection Via the Lasso,” (1996) Royal Statistical Society, Series B, 58, pp. 267-288 
504 |a Wright, S.J., “Coordinate Descent Algorithms,” (2015) Mathematical Programming, 151, pp. 3-34 
504 |a Yohai, V.J., “High Breakdown-point and High Efficiency Robust Estimates for Regression,” (1987) The Annals of Statistics, 15, pp. 642-656 
520 3 |a We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series and therefore they are not appropriate for forecasting purposes. On the contrary, it is shown that the ODPC introduced in this article can be successfully used for forecasting high-dimensional multiple time series. An alternating least-squares algorithm to compute the proposed ODPC is presented. We prove that for stationary and ergodic time series the estimated values converge to their population analogs. We also prove that asymptotically, when both the number of series and the sample size go to infinity, if the data follow a dynamic factor model, the reconstruction obtained with ODPC converges in mean square to the common part of the factor model. The results of a simulation study show that the forecasts obtained with ODPC compare favorably with those obtained using other forecasting methods based on dynamic factor models. Supplementary materials for this article are available online. © 2019, © 2019 American Statistical Association.  |l eng 
593 |a Department of Statistics and Institute of Financial Big Data, Universidad Carlos III de Madrid, Getafe, Spain 
593 |a Department of Mathematics and Statistics, Universidad Torcuato Di Tella, Buenos Aires, Argentina 
593 |a Department of Mathematics, Instituto de Calculo, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a School of Exact and Natural Sciences, Universidad de Buenos Aires, Argentina 
593 |a CONICET, Buenos Aires, Argentina 
690 1 0 |a DIMENSIONALITY REDUCTION 
690 1 0 |a DYNAMIC FACTOR MODELS 
690 1 0 |a HIGH-DIMENSIONAL TIME SERIES 
700 1 |a Smucler, E. 
700 1 |a Yohai, V.J. 
773 0 |d American Statistical Association, 2019  |p J. Am. Stat. Assoc.  |x 01621459  |w (AR-BaUEN)CENRE-264  |t Journal of the American Statistical Association 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062355732&doi=10.1080%2f01621459.2018.1520117&partnerID=40&md5=41365c1df48b7f86f4124a2d5f2cb60c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/01621459.2018.1520117  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01621459_v_n_p_Pena  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01621459_v_n_p_Pena  |y Registro en la Biblioteca Digital 
961 |a paper_01621459_v_n_p_Pena  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86815