HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex

Dysregulation of histone deacetylases (HDAC) has been proposed as a potential contributor to aberrant transcriptional profiles that can lead to changes in cognitive functions. It is known that METH negatively impacts the prefrontal cortex (PFC) leading to cognitive decline and addiction whereas moda...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: González, B.
Otros Autores: Bernardi, A., Torres, O.V, Jayanthi, S., Gomez, N., Sosa, M.H, García-Rill, E., Urbano, F.J, Cadet, J.-L, Bisagno, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14962caa a22011537a 4500
001 PAPER-25858
003 AR-BaUEN
005 20230518205800.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85062320700 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ADBIF 
100 1 |a González, B. 
245 1 0 |a HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex 
260 |b Blackwell Publishing Ltd  |c 2019 
270 1 0 |m Cadet, J.-L.; Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research ProgramUnited States; email: jcadet@intra.nida.nih.gov 
506 |2 openaire  |e Política editorial 
504 |a Zentner, G.E., Henikoff, S., Regulation of nucleosome dynamics by histone modifications (2013) Nat Struct Mol Biol, 20 (3), pp. 259-266 
504 |a Robison, A.J., Nestler, E.J., Transcriptional and epigenetic mechanisms of addiction (2011) Nat Rev Neurosci, 12 (11), pp. 623-637 
504 |a Gräff, J., Tsai, L.H., Histone acetylation: molecular mnemonics on the chromatin (2013) Nat Rev Neurosci, 14 (2), pp. 97-111 
504 |a Volmar, C.H., Wahlestedt, C., Histone deacetylases (HDACs) and brain function (2015) Neuroepigenetics, V1, pp. 20-27 
504 |a Bisagno, V., González, B., Urbano, F.J., Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits (2016) Pharmacol Res, 109, pp. 108-118 
504 |a González, B., Raineri, M., Cadet, J.L., García-Rill, E., Urbano, F.J., Bisagno, V., Modafinil improves methamphetamine-induced object recognition deficits and restores prefrontal cortex ERK signaling in mice (2014) Neuropharmacology, 87, pp. 188-197 
504 |a González, B., Rivero-Echeto, C., Muñiz, J.A., Methamphetamine blunts Ca(2+) currents and excitatory synaptic transmission through D1/5 receptor-mediated mechanisms in the mouse medial prefrontal cortex (2016) Addict Biol, 21 (3), pp. 589-602 
504 |a González, B., Jayanthi, S., Gomez, N., Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex (2018) Prog Neuropsychopharmacol Biol Psychiatry, 82, pp. 1-11 
504 |a González, B., Torres, O.V., Jayanthi, S., The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors (2019) Prog Neuropsychopharmacol Biol Psychiatry, 88, pp. 222-234 
504 |a Haberland, M., Montgomery, R.L., Olson, E.N., The many roles of histone deacetylases in development and physiology: implications for disease and therapy (2009) Nat Rev Genet, 10 (1), pp. 32-42 
504 |a Houtkooper, R.H., Pirinen, E., Auwerx, J., Sirtuins as regulators of metabolism and healthspan (2012) Nat Rev Mol Cell Biol, 13 (4), pp. 225-238 
504 |a Broide, R.S., Redwine, J.M., Aftahi, N., Young, W., Bloom, F.E., Winrow, C.J., Distribution of histone deacetylases 1-11 in the rat brain (2007) J Mol Neurosci, 31 (1), pp. 47-58 
504 |a Di Giorgio, E., Brancolini, C., Regulation of class IIa HDAC activities: it is not only matter of subcellular localization (2016) Epigenomics, 8 (2), pp. 251-269 
504 |a Chawla, S., Vanhoutte, P., Arnold, F.J., Huang, C.L., Bading, H., Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5 (2003) J Neurochem, 85 (1), pp. 151-159 
504 |a Satoh, A., Imai, S., Systemic regulation of mammalian ageing and longevity by brain sirtuins (2014) Nat Commun, 5 (1), p. 4211 
504 |a Bryant, D.T., Landles, C., Papadopoulou, A.S., Disruption to schizophrenia-associated gene Fez1 in the hippocampus of HDAC11 knockout mice (2017) Sci Rep, 7 (1), p. 11900 
504 |a Seto, E., Yoshida, M., Erasers of histone acetylation: the histone deacetylase enzymes (2014) Cold Spring Harb Perspect Biol, 6 (4), p. a018713 
504 |a Godino, A., Jayanthi, S., Cadet, J.L., Epigenetic landscape of amphetamine and methamphetamine addiction in rodents (2015) Epigenetics, 10 (7), pp. 574-580 
504 |a Wang, Z., Zang, C., Cui, K., Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes (2009) Cell, 138 (5), pp. 1019-1031 
504 |a Sulzer, D., Sonders, M.S., Poulsen, N.W., Galli, A., Mechanisms of neurotransmitter release by amphetamines: a review (2005) Prog Neurobiol, 75 (6), pp. 406-433 
504 |a Wisor, J., Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions (2013) Front Neurol, 4, p. 139 
504 |a Rogge, G.A., Wood, M.A., The role of histone acetylation in cocaine-induced neural plasticity and behavior (2013) Neuropsychopharmacology, 38 (1), pp. 94-110 
504 |a Jayanthi, S., McCoy, M.T., Chen, B., Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms (2014) Biol Psychiatry, 76 (1), pp. 47-56 
504 |a Renthal, W., Kumar, A., Xiao, G., Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins (2009) Neuron, 62 (3), pp. 335-348 
504 |a Agricola, E., Verdone, L., Di Mauro, E., Caserta, M., H4 acetylation does not replace H3 acetylation in chromatin remodelling and transcription activation of Adr1-dependent genes (2006) Mol Microbiol, 62 (5), pp. 1433-1446 
504 |a Gansen, A., Tóth, K., Schwarz, N., Langowski, J., Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure––a FRET study (2015) Nucleic Acids Res, 43 (3), pp. 1433-1443 
504 |a Yu, Q., Olsen, L., Zhang, X., Boeke, J.D., Bi, X., Differential contributions of histone H3 and H4 residues to heterochromatin structure (2011) Genetics, 188 (2), pp. 291-308 
504 |a Kumar, A., Choi, K.H., Renthal, W., Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum (2005) Neuron, 48 (2), pp. 303-314 
504 |a Wang, L., Lv, Z., Hu, Z., Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement (2010) Neuropsychopharmacology, 35 (4), pp. 913-928 
504 |a Fischle, W., Dequiedt, F., Hendzel, M.J., Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR (2002) Mol Cell, 9 (1), pp. 45-57 
504 |a Baltan, S., Bachleda, A., Morrison, R.S., Murphy, S.P., Expression of histone deacetylases in cellular compartments of the mouse brain and the effects of ischemia (2011) Transl Stroke Res, 2 (3), pp. 411-423 
504 |a Guan, J.S., Haggarty, S.J., Giacometti, E., HDAC2 negatively regulates memory formation and synaptic plasticity (2009) Nature, 459 (7243), pp. 55-60 
504 |a Schuettengruber, B., Simboeck, E., Khier, H., Seiser, C., Autoregulation of mouse histone deacetylase 1 expression (2003) Mol Cell Biol, 23 (19), pp. 6993-7004 
504 |a Zhou, Y., Grummt, I., The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing (2005) Curr Biol, 15 (15), pp. 1434-1438 
504 |a Griffin, E.A., Jr., Melas, P.A., Zhou, R., Prior alcohol use enhances vulnerability to compulsive cocaine self-administration by promoting degradation of HDAC4 and HDAC5 (2017) Sci Adv, 3 (11) 
504 |a Renthal, W., Maze, I., Krishnan, V., Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli (2007) Neuron, 56 (3), pp. 517-529 
504 |a Agis-Balboa, R.C., Pavelka, Z., Kerimoglu, C., Fischer, A., Loss of HDAC5 impairs memory function: implications for Alzheimer's disease (2013) J Alzheimers Dis, 33 (1), pp. 35-44 
504 |a Sando, R., 3rd, Gounko, N., Pieraut, S., Liao, L., Yates, J., 3rd, Maximov, A., HDAC4 governs a transcriptional program essential for synaptic plasticity and memory (2012) Cell, 151 (4), pp. 821-834 
504 |a Penrod, R.D., Carreira, M.B., Taniguchi, M., Kumar, J., Maddox, S.A., Cowan, C.W., Novel role and regulation of HDAC4 in cocaine-related behaviors (2018) Addict Biol, 23 (2), pp. 653-664 
504 |a Li, X., Carreria, M.B., Witonsky, K.R., Role of Dorsal Striatum Histone Deacetylase 5 in Incubation of Methamphetamine Craving (2018) Biol Psychiatry, 84 (3), pp. 213-222 
504 |a Jing, X., Sui, W.H., Wang, S., HDAC7 ubiquitination by the E3 ligase CBX4 is involved in contextual fear conditioning memory formation (2017) J Neurosci, 37, pp. 3848-3863 
504 |a Ma, C., D'Mello, S.R., Neuroprotection by histone deacetylase-7 (HDAC7) occurs by inhibition of c-jun expression through a deacetylase-independent mechanism (2011) J Biol Chem, 286 (6), pp. 4819-4828 
504 |a Jenner, P., Zeng, B.Y., Smith, L.A., Antiparkinsonian and neuroprotective effects of modafinil in the mptp-treated common marmoset (2000) Exp Brain Res, 133 (2), pp. 178-188 
504 |a Raineri, M., Gonzalez, B., Goitia, B., Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum (2012) PLoS ONE, 7 (10) 
504 |a Raineri, M., Peskin, V., Goitia, B., Attenuated methamphetamine induced neurotoxicity by modafinil administration in mice (2011) Synapse, 65 (10), pp. 1087-1098 
504 |a Ueki, A., Rosén, L., Andbjer, B., The vigilance-promoting drug modafinil counteracts the reduction of tyrosine hydroxylase immunoreactivity and of dopamine stores in nigrostriatal dopamine neurons in the male rat after a partial transection of the dopamine pathway (1993) Exp Brain Res, 93 (2), pp. 259-270 
504 |a van Vliet, S.A., Blezer, E.L., Jongsma, M.J., Vanwersch, R.A., Olivier, B., Philippens, I.H., Exploring the neuroprotective effects of modafinil in a marmoset Parkinson model with immunohistochemistry, magnetic resonance imaging and spectroscopy (2008) Brain Res, 1189, pp. 219-228 
504 |a Krasnova, I.N., Cadet, J.L., Methamphetamine toxicity and messengers of death (2009) Brain Res Rev, 60 (2), pp. 379-407 
504 |a Donmez, G., Outeiro, T.F., SIRT1 and SIRT2: emerging targets in neurodegeneration (2013) EMBO Mol Med, 5 (3), pp. 344-352 
504 |a Ozden, O., Park, S.H., Kim, H.S., Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress (2011) Aging (Albany NY), 3 (2), pp. 102-107 
504 |a Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., Guarente, L., Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription (2006) Genes Dev, 20 (9), pp. 1075-1080 
504 |a Yanginlar, C., Logie, C., HDAC11 is a regulator of diverse immune functions (2018) Biochim Biophys Acta, 1861 (1), pp. 54-59 
504 |a Host, L., Dietrich, J.B., Carouge, D., Aunis, D., Zwiller, J., Cocaine self-administration alters the expression of chromatin-remodelling proteins; modulation by histone deacetylase inhibition (2011) J Psychopharmacol, 25 (2), pp. 222-229 
504 |a Renthal, W., Nestler, E.J., Epigenetic mechanisms in drug addiction (2008) Trends Mol Med, 14 (8), pp. 341-350 
520 3 |a Dysregulation of histone deacetylases (HDAC) has been proposed as a potential contributor to aberrant transcriptional profiles that can lead to changes in cognitive functions. It is known that METH negatively impacts the prefrontal cortex (PFC) leading to cognitive decline and addiction whereas modafinil enhances cognition and has a low abuse liability. We investigated if modafinil (90 mg/kg) and methamphetmine (METH) (1 mg/kg) may differentially influence the acetylation status of histones 3 and 4 (H3ac and H4ac) at proximal promoters of class I, II, III, and IV HDACs. We found that METH produced broader acetylation effects in comparison with modafinil in the medial PFC. For single dose, METH affected H4ac by increasing its acetylation at class I Hdac1 and class IIb Hdac10, decreasing it at class IIa Hdac4 and Hdac5. Modafinil increased H3ac and decreased H4ac of Hdac7. For mRNA, single-dose METH increased Hdac4 and modafinil increased Hdac7 expression. For repeated treatments (4 d after daily injections over 7 d), we found specific effects only for METH. We found that METH increased H4ac in class IIa Hdac4 and Hdac5 and decreased H3/H4ac at class I Hdac1, Hdac2, and Hdac8. At the mRNA level, repeated METH increased Hdac4 and decreased Hdac2. Class III and IV HDACs were only responsive to repeated treatments, where METH affected the H3/H4ac status of Sirt2, Sirt3, Sirt7, and Hdac11. Our results suggest that HDAC targets linked to the effects of modafinil and METH may be related to the cognitive-enhancing vs cognitive-impairing effects of these psychostimulants. © 2019 Society for the Study of Addiction  |l eng 
593 |a Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
593 |a Department of Behavioral Sciences, San Diego Mesa College, San Diego, CA, United States 
593 |a Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States 
593 |a Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States 
593 |a Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
690 1 0 |a HDAC 
690 1 0 |a HISTONE ACETYLATION 
690 1 0 |a METHAMPHETAMINE 
690 1 0 |a MODAFINIL 
690 1 0 |a PREFRONTAL CORTEX 
700 1 |a Bernardi, A. 
700 1 |a Torres, O.V. 
700 1 |a Jayanthi, S. 
700 1 |a Gomez, N. 
700 1 |a Sosa, M.H. 
700 1 |a García-Rill, E. 
700 1 |a Urbano, F.J. 
700 1 |a Cadet, J.-L. 
700 1 |a Bisagno, V. 
773 0 |d Blackwell Publishing Ltd, 2019  |p Addict. Biol.  |x 13556215  |w (AR-BaUEN)CENRE-3552  |t Addiction Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062320700&doi=10.1111%2fadb.12737&partnerID=40&md5=2acc2b7698d77c934c82e416fa33c4a7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/adb.12737  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13556215_v_n_p_Gonzalez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13556215_v_n_p_Gonzalez  |y Registro en la Biblioteca Digital 
961 |a paper_13556215_v_n_p_Gonzalez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86811