Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models

Interannual variability of surface air temperature over South America is investigated and, based on previous studies, thought to be partly the consequence of soil–atmosphere interaction. Annual and monthly averages of surface air temperature, evapotranspiration, heat fluxes, surface radiation and cl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Menéndez, C.G
Otros Autores: Giles, J., Ruscica, R., Zaninelli, P., Coronato, T., Falco, M., Sörensson, A., Fita, L., Carril, A., Li, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2019
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15323caa a22011657a 4500
001 PAPER-25837
003 AR-BaUEN
005 20230518205758.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85061642777 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Menéndez, C.G. 
245 1 0 |a Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models 
260 |b Springer Verlag  |c 2019 
270 1 0 |m Menéndez, C.G.; Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA)Argentina; email: menendez@cima.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Andreoli, R., Kayano, M., ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold pacific decadal oscillation regimes (2005) Int J Climatol, 25, pp. 2017-2030 
504 |a Barreiro, M., Díaz, N., Land–atmosphere coupling in El Niño influence over South America (2011) Atmos Sci Lett, 12, pp. 351-355 
504 |a Bechtold, P., Bazile, E., Guichard, F., Mascart, P., Richard, E., A mass-flux convection scheme for regional and global models (2001) Q J R Meteorol Soc, 127, pp. 869-886 
504 |a Bedoya-Soto, J.M., Poveda, G., Sauchyn, D., New insights on land surface-atmosphere feedbacks over tropical South America at interannual timescales (2018) Water, 10, p. 1095 
504 |a Berg, A., Lintner, B.R., Findell, K., Seneviratne, S.I., van den Hurk, B., Ducharne, A., Chéruy, F., Gentine, P., Interannual coupling between summertime surface temperature and precipitation over land: processes and implications for climate change (2015) J Clim, 28, pp. 1308-1328 
504 |a Carril, A.F., Menéndez, C.G., Remedio, A.R.C., Performance of a multi-RCMensemble for South Eastern South America (2012) Clim Dyn, 39, pp. 2747-2768 
504 |a Cazes-Boezio, G., Robertson, A.W., Mechoso, C.R., Seasonal dependence of ENSO teleconnections over South America and relationships with precipitation in Uruguay (2003) J Clim, 16, pp. 1159-1176 
504 |a Chen, W., Jiang, Z., Li, L., Yiou, P., Simulation of regional climate change under the IPCC A2 scenario in southeast China (2011) Clim Dyn, 36, pp. 491-507 
504 |a da Rocha, R.P., Cuadra, S.V., Reboita, M.S., Kruger, L.F., Ambrizzi, T., Krusche, N., Effects of RegCM3 parameterizations on simulated rainy season over South America (2012) Clim Res, 52, pp. 253-265 
504 |a Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Vitart, J.-N., The ERA-Interim reanalysis: configuration and performance of the data assimilation system (2011) Q J R Meteorol Soc, 137, pp. 553-597 
504 |a Emanuel, K.A., A scheme for representing cumulus convection in large-scale models (1991) J Atmos Sci, 48, pp. 2313-2329 
504 |a Emanuel, K.A., A cumulus representation based on the episodic mixing model: The importance of mixing and microphysics in predicting humidity (1993) The representation of cumulus convection in numerical models. Meteorological Monographs, pp. 185-192. , Emanuel KA, Raymond DJ, (eds), American Meteorological Society, Boston, MA 
504 |a Falco, M., Carril, A.F., Menéndez, C.G., Zaninelli, P., Li, L.Z.X., Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations (2018) Clim Dyn 
504 |a Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., (2014) Climate change 2014: impacts, adaptation, and vulnerability: Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, , Cambridge University Press, Cambridge 
504 |a Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J., Present-day South American climate (2008) Paleogeogr Palaeoclimato lPalaeoecol 
504 |a Guillevic, P., Koster, R.D., Suarez, M.J., Bounoua, L., Collatz, G.J., Los, S.O., Mahanama, S.P., Influence of the interannual variability of vegetation on the surface energy balance—a global sensitivity study (2002) J Hydrometeor, 3, pp. 617-629 
504 |a Guo, Z., Dirmeyer, P.A., Interannual variability of land–atmosphere coupling strength (2013) J Hydrometeor, 14, pp. 1636-1646 
504 |a Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., Updatedhigh-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset (2014) Int J Climatol, 34, pp. 623-642 
504 |a Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Lott, F., The LMDZ4 generalcirculation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection (2006) Clim Dyn, 27, pp. 787-813 
504 |a Jones, C., Willen, U., Ullerstig, A., Hansson, U., The Rossby Centre regional atmospheric climate model part I: model climatology and performance for the present climate over Europe (2004) Ambio, 33 (4-5), pp. 199-210 
504 |a Jung, M., Reichstein, M., Ciais, P., Seneviratne, S.I., Sheffield, J., Goulden, M.L., Bonan, G., Zhang, K., Recent decline in the global land evapotranspiration trend due to limited moisture supply (2010) Nature, 467 (7318), pp. 951-954 
504 |a Kain, J.S., Fritsch, J.M., A one-dimensional entraining/detraining plume model and its application in convective parameterization (1990) J Atmos Sci, 47, pp. 2784-2802 
504 |a Kain, J.S., Fritsch, J.M., Convective parameterizations for Mesoscale Models: The Kain–Fritsch scheme (1993) The Representation of Cumulus Convection in Numerical Models, 46, p. 246. , Emanuel KA, Raymond DJ, AMS Monograph 
504 |a Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J.J., Fiorino, M., Potter, G.L., NCEP-DOE AMIP-II reanalysis (R-2) (2002) Bull Am Meteorol Soc, 83, pp. 1631-1643 
504 |a Koster, R.D., Regions of strong coupling between soil moisture and precipitation (2004) Science, 305, pp. 1138-1140 
504 |a Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Colin Prentice, I., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system (2005) Global Biogeochem Cycles 
504 |a Krzywinski, M., Altman, N., Visualizing samples with box plots (2014) Nat Methods, 11, pp. 119-120 
504 |a Kupiainen, M., Jansson, C., Samuelsson, P., Jones, C., Willén, U., Hansson, U., Ullerstig, A., Döscher, R., Rossby Centre regional atmospheric model, RCA4 (2014) Rossby Center News Letter, Rossby Centre Regional Atmospheric Model, RCA4 
504 |a Le Treut, H., Li, Z.X., Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties (1991) Clim Dyn, 5, pp. 175-187 
504 |a Lenderink, G., van Ulden, A., van den Hurk, B., Summertime inter-annual temperature variability in an ensemble of regional model simulations: analysis of the surface energy budget (2007) Clim Change, 81, p. 233 
504 |a Li, Z.X., Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994 (1999) J Clim, 12, pp. 986-1001 
504 |a Llopart, M., da Rocha, R.P., Reboita, M., Sensitivity of simulated South America climate to the land surface schemes in RegCM4 (2017) Clim Dyn, 49, p. 3975 
504 |a Menéndez, C.G., Zaninelli, P.G., Carril, A.F., Sánchez, E., Hydrological cycle, temperature, and land surface–atmosphere interaction in the La Plata Basin during summer: response to climate change (2016) Clim Res, 68, pp. 231-241 
504 |a Nobre, P., Shukla, J., Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America (1996) J Clim, 9, pp. 2464-2479 
504 |a Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Taira, R., The JRA-25 reanalysis (2007) J Meteorol Soc Jpn, 85, pp. 369-432 
504 |a Peixoto, J.P., Oort, A.H., (1992) Physics of climate, , American Institute of Physics, New York 
504 |a Poveda, G., Waylen, P., Pulwarty, R., Annual and inter-annual variability of present climate in northern South America and southern Mesoamerica (2006) Paleogeogr Palaeoclimato lPalaeoecol, 234 (1), pp. 3-27 
504 |a Räisänen, P., Rummukainen, M., Räisänen, J., Modification of the HIRLAM radiation scheme for use in the Rossby Centre regional atmospheric climate model (2000) Reports Meteorology and Climatology, p. 49. , Department of Meteorology, University of Helsinki, Finland 
504 |a Rasch, P.J., Kristjansson, J.E., A comparison of the CCM3 Model climate using diagnosed and predicted condensate parameterizations (1998) J Clim, 11, pp. 1587-1614 
504 |a Ruscica, R.C., Sörensson, A.A., Menéndez, C.G., Pathways between soil moisture and precipitation in southeastern South America (2015) Atmos Sci Lett, 16, pp. 267-272 
504 |a Ruscica, R.C., Menéndez, C.G., Sörensson, A.A., Land surface-atmosphere interaction in future South American climate using a multi-model ensemble (2016) Atmos Sci Lett, 17, pp. 141-147 
504 |a Samuelsson, P., Jones, C.G., Willén, U., Ullerstig, A., The rossby centre regional climate model RCA3: model description and performance (2011) Tellus, 63A, pp. 4-23 
504 |a Samuelsson, P., Gollvik, S., Jansson, C., Kupiainen, M., Kourzeneva, E., van De Berg, W.J., (2014) The surface processes of the Rossby Centre regional atmospheric climate model (RCA4), , Report in Meteorology 157, SMHI, SE-601 76 Norrköping, Sweden 
504 |a Sass, B.H., Rontu, L., Savijärvi, H., Räisänen, P., (1994) HIRLAM-2 Radiationscheme: Documentation and tests, p. 43. , Hirlam technical report No 16, SMHI, SE-601 76 Norrköping, Sweden 
504 |a Savijärvi, H., A fast radiation scheme for mesoscale model and short-range forecast models (1990) J Appl Met, 29, pp. 437-447 
504 |a Seneviratne, S.I., Lüthi, D., Litschi, M., Schär, C., Land-atmosphere coupling and climate change in Europe (2006) Nature, 443, pp. 205-209 
504 |a Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Teuling, A.J., Investigating soil moisture–climate interactions in a changing climate:a review (2010) Earth-Sci Rev, 99 (3), pp. 125-161 
504 |a Sörensson, A.A., Menéndez, C.G., Summer soil-precipitation coupling in South America (2011) Tellus, 63A, pp. 56-68 
504 |a Spennemann, P.C., Saulo, A.C., An estimation of the land-atmosphere coupling strength in South America using the Global Land Data assimilation system (2015) Int J Climatol, 35, pp. 4151-4166 
504 |a Spennemann, P.C., Salvia, M., Ruscica, R.C., Sörensson, A.A., Grings, F., Karszenbaum, H., Land-atmosphere interaction patterns in southeastern South America using satellite products and climate models (2018) Int J Appl Earth Obs Geoinf, 64, pp. 96-103 
504 |a Thomasz, O.E., Vilker, A.S., Rondinone, G., The economic cost of extreme and severe droughts in soybean production in Argentina (2019) Contaduría y Administración, 64 (1), pp. 1-24 
504 |a Van Leer, B., Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection (1977) J Comput Phys, 23, pp. 276-299 
504 |a Wing, G.Y.K., Sushama, L., Diro, G.T., The intraannual variability of land atmosphere coupling over North America in the Canadian regional climate model (CRCM5) (2016) J Geophys Res, 121, pp. 13,859-13,885 
504 |a Zaninelli, P.G., Menéndez, C.G., Falco, M., López-Franca, N., Carril, A.F., Future hydroclimatological changes in South America based on an ensemble of regional climate models (2018) Clim Dyn 
504 |a Zou, L.W., Zhou, T.J., Li, L., Zhang, J., East China Summer rainfall variability of 1958–2000: dynamical downscaling with a variable-resolution AGCM (2010) J Clim, 23, pp. 6394-6408 
520 3 |a Interannual variability of surface air temperature over South America is investigated and, based on previous studies, thought to be partly the consequence of soil–atmosphere interaction. Annual and monthly averages of surface air temperature, evapotranspiration, heat fluxes, surface radiation and cloud cover, simulated by two regional climate models, RCA4 and LMDZ, were analyzed. To fully reveal the role of soil as a driver of temperature variability, simulations were performed with and without soil moisture-atmosphere coupling (Control and Uncoupled). Zones of large variance in air temperature and strong soil moisture-atmosphere coupling are found in parts of La Plata Basin and in eastern Brazil. The two models show different behaviors in terms of coupling magnitude and its geographical distribution, being the coupling strength higher in RCA4 and weaker in LMDZ. RCA4 also shows greater amplitude of the annual cycle of the monthly surface air temperature compared to LMDZ. In both regions and for both models, the Uncoupled experiment tends to be colder and exhibits smaller amplitude of the interannual variability and larger evaporative fraction than the Control does. It is evidenced that variability of the land surface affects, and is affected by, variability of the surface energy balance and that interannual temperature variability is partly driven by land–atmosphere interaction. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.  |l eng 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), Buenos Aires, Argentina 
593 |a Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos (UMI3351-IFAECI/CNRS-CONICET-UBA), Buenos Aires, Argentina 
593 |a Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Buenos Aires, La Plata, Argentina 
593 |a Laboratoire de Météorologie Dynamique, CNRS, Paris, France 
690 1 0 |a INTERANNUAL CLIMATE VARIABILITY 
690 1 0 |a LAND–ATMOSPHERE INTERACTION 
690 1 0 |a REGIONAL CLIMATE MODELING 
690 1 0 |a SURFACE AIR TEMPERATURE 
651 4 |a SOUTH AMERICA 
700 1 |a Giles, J. 
700 1 |a Ruscica, R. 
700 1 |a Zaninelli, P. 
700 1 |a Coronato, T. 
700 1 |a Falco, M. 
700 1 |a Sörensson, A. 
700 1 |a Fita, L. 
700 1 |a Carril, A. 
700 1 |a Li, L. 
773 0 |d Springer Verlag, 2019  |p Clim. Dyn.  |x 09307575  |w (AR-BaUEN)CENRE-567  |t Climate Dynamics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061642777&doi=10.1007%2fs00382-019-04668-6&partnerID=40&md5=ec2b0cb077fc0d3271d9a8068ac626f3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00382-019-04668-6  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09307575_v_n_p_Menendez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v_n_p_Menendez  |y Registro en la Biblioteca Digital 
961 |a paper_09307575_v_n_p_Menendez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86790