Pilot testing of a bioremediation system for water and soils contaminated with heavy metals: vegetable depuration module

We present a novel constructed wetland called a vegetable depuration module (VDM) as a pilot test of a bioremediation system (BS) for decontaminating water and soil polluted with heavy metals. The VDM consisted of a pool filled with stones of different granulometry and a substrate top layer composed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Scotti, A.
Otros Autores: Silvani, V.A, Cerioni, J., Visciglia, M., Benavidez, M., Godeas, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Taylor and Francis Inc. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13502caa a22009977a 4500
001 PAPER-25833
003 AR-BaUEN
005 20230518205758.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85063424819 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a IJPHF 
100 1 |a Scotti, A. 
245 1 0 |a Pilot testing of a bioremediation system for water and soils contaminated with heavy metals: vegetable depuration module 
260 |b Taylor and Francis Inc.  |c 2019 
270 1 0 |m Scotti, A.; Comisión Nacional de Energía Atómica, International Center for Earth Sciences, Complejo Minero Fabril San Rafael CMFSR-CNEAArgentina; email: scotti@cnea.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Akinbile, C., Suffian Yusoff, M., Ahmad Zuki, A.Z., Landfill leachate treatment using sub-surface flow constructed wetland by Cyperus haspan (2012) Waste Manage, 32 (7), pp. 1387-1393 
504 |a Akratos, C.S., Tsihrintzis, V., Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands (2007) Ecol Engin, 29 (2), pp. 173-191 
504 |a (1992) Standard methods for examination of water and waste, , 18th. ed, Washington DC: American Public Health Association 
504 |a Babel, S., Opiso, E.M., Removal of Cr from synthetic wastewater by sorption into volcanic ash soil (2007) Int J Environ Sci Technol, 4 (1), pp. 99-107 
504 |a Barbosa, C., Ferrara, B., Chaves Silva, S., Ricon de Oliveira, R., Chalfun, A., Jr., Zinc supply impacts on the relative expression of a metallothionein-like gene in Coffea arabica plants (2017) Plant Soil, 411 (1-2), pp. 179-191 
504 |a Berrow, M., Stein, W., Extraction of metals from soils and sewage sludges by refluxing with aqua regia (1983) Analyst, 108 (1283), pp. 277-285 
504 |a Bompadre, M.J., Silvani, V.A., Fernández Bidondo, L., Ríos de Molina, M.C., Colombo, R., Pardo, A.G., Godeas, A., Arbuscular mycorrhizal fungi alleviate oxidative stress in pomegranate plants growing under different irrigation conditions (2014) Botany, 92 (3), pp. 187-193 
504 |a Brett, H., Marc Leblanc, R., Petit, D., Brooks, R.R., Kirkman, J.H., Gregg, P.E.H., The potential of Thlaspi caerulescens for phytoremediation of contaminated soils (1998) Plant Soil, 203, pp. 47-56 
504 |a Brix, H., Constructed wetlands for municipal wastewater treatment in Europe (1994) Global wetlands: old world and new, pp. 325-333. , Mitsch W.J., (ed), Amsterdam: Elsevier,. In:, editor,. p 
504 |a Castañón-Silva, P.A., Venegas Urrutia, M.A., Lobos-Valenzuela, M.G., Gaete-Olivares, H.J., Influence of arbuscular mycorrhizal Glomus spp. on growth and accumulation of copper in sunflower Helianthus annuus L (2013) Agrociencia, 47 (4), pp. 309-317 
504 |a Christie, P., Li, X.L., Chen, B.D., Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc (2004) Plant Soil, 261 (1-2), pp. 209-217 
504 |a Cornejo, P., Pérez-Tienda, J., Meier, S., Valderas, A., Borie, F., Azcón-Aguilar, C., Ferrol, N., Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments (2013) Soil Biol Biochem, 57, pp. 925-928 
504 |a Cortés Sandoval, A.E., (2014) Evaluación del desempeño de humedales construidos subsuperficial de flujo horizontal sembrados con especies nativas tropicales para la eliminación de Cr (VI) y Cd (II) de lixiviado de relleno sanitario [dissertation, , Santiago de Cali (Colombia): Universidad del Valle, Facultad de Ingeniería 
504 |a Davies, F.T., Puryear, J.D., Newton, R.J., Egilla, J.N., Saraiva Grossi, J.A., Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange (2002) J Plant Nutr, 25 (11), pp. 2389-2407 
504 |a Dushenkov, S., Trends in phytoremediation of radionuclides (2003) Plant Soil, 249, pp. 167-175 
504 |a Giovannetti, M., Mosse, B., An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots (1980) N Phytol, 84 (3), pp. 489-500 
504 |a Glick, B.R., Phytoremediation: synergistic use of plants and bacteria to clean up the environment (2003) Biotechnol Adv, 21 (5), pp. 383-393 
504 |a Gohre, V., Paszkowski, U., Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation (2006) Planta, 223 (6), pp. 1115-1122 
504 |a Gryndler, M., Larsen, J., Hršelová, H., Řezáčová, V., Gryndlerová, H., Kubát, J., Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment (2006) Mycorrhiza, 16 (3), pp. 159-166 
504 |a Guittonny-Philippe, A., Masotti, V., Höhener, P., Boudenne, J.L., Viglione, J., Laffont Schwo, I., Constructed wetlands to reduce metal pollution from industrial catchmentsin aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions (2014) Environm Inter, 64, pp. 1-16 
504 |a Hajiboland, R., Aliasgharpour, M., Dashtbani, F., Movafeghi, A., Dadpour, M.R., Localization and study of histochemical effects of excess Mn in Sunflower (Helianthus annuus L. cv. Azarghol) plants (2008) J Sci Islam Repub Iran, 19 (4), pp. 305-315 
504 |a Husson, O., Redox potential (Eh) and pH as driversof soil/plant/microorganism systems: a transdisciplinaryoverview pointing to integrative opportunities for agronomy (2013) Plant Soil, 362 (1-2), pp. 389-417 
504 |a Ibañez de Aldecoa Quintana, J.M., Niveles de madurez de la tecnología [Technology readiness levels: TRLS]: Una introducción (2014) Econ Indus, 393, pp. 165-171 
504 |a James, C.A., Xin, G., Doty, S.L., Muiznieks, I., Newman, L., Strand, S.E., A mass balance study of the phytoremediation ofperchloroethylene-contaminated groundwater (2009) Environ Pollut, 157 (8-9), pp. 2564-2569 
504 |a Kadlec, R.H., Knight, R.L., Vymazal, J., Brix, H., Cooper, P., (2000) Constructed wetlands for pollution control, , London, UK: IWA Publishing 
504 |a Kalra, Y.P., (1998) Handbook of reference methods for plant analysis, , Boca Rotan, FL: CRC Press 
504 |a Ker, K., Charest, C., Nickel remediation by AM-colonized sunflower (2010) Mycorrhiza, 20 (6), pp. 399-406 
504 |a Khan, S., Ahmad, I., Shah, M.T., Rehman, S., Khaliq, A., Use of constructed wetland for the removal of heavy metals from industrial wastewater (2009) J Environ Manage, 90 (11), pp. 3451-3457 
504 |a Kleiman, I.D., Cogliatti, D.H., Chromium removal from aqueous solutions by different plant species (1998) Environ Technol, 19 (11), pp. 1127-1132 
504 |a Lanfranco, L., Bolchi, A., Ros, E.C., Ottonello, S., Bonfante, P., Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus (2002) Plant Physiol, 130 (1), pp. 58-67 
504 |a Lenoir, I., Fontaine, J., Lounès-Hadj Sahraoui, A., Arbuscular mycorrhizal fungal responses to abiotic stresses: a review (2016) Phytochemistry, 123, pp. 4-15 
504 |a Madera-Parra, C.A., Treatment of landfill leachate by polyculture constructed wetlands planted with native plants (2016) Ing Comptet, 18 (2), pp. 183-192 
504 |a Mena, J., Rodríguez, L., Núñez, J., Fernández, F.J., Villaseñor, J., Design of horizontal and vertical subsurface flow constructed wetlands treating industrial wastewaters (2008) WIT Trans Ecol Environ, 111, pp. 555-564 
504 |a Nishi, M., Singh, J., Bohra, S., Quaizi, A., Anil Vyas, A., Arbuscular mycorrhizal fungi: a potential tool for phytoremediation (2007) J Plant Sci, 2, pp. 127-140 
504 |a Nyquist, J., Greger, M., A field study of constructed wetlands for preventing and treating acid mine drainage (2009) Ecol Eng, 35 (5), pp. 630-642 
504 |a Olsson, P.A., Hammer, E.C., Pallon, J., Van Aarle, I.M., Wallander, H., Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis (2011) Fungal Biol, 115 (7), pp. 643-648 
504 |a Phillips, J.M., Hayman, D.S., Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection (1970) Trans Br Mycol Soc, 55 (1), pp. 158-160 
504 |a Rivelli, A.R., De Maria, S., Puschenreiter, M., Gherbin, P., Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements (2012) Int J Phytoremed, 14 (4), pp. 320-334 
504 |a Sasmaz, A., Sasmaz, M., The phytoremediation potential for strontium of indigenous plants growing in a mining area (2009) Environ Exp Bot, 67 (1), pp. 139-144 
504 |a Scotti, A., Godeas, A., Silvani, V., (2013), Inventors; National Atomic Energy Commission, University of Bue Aires, assignees.,. Sistema biorremediador para tratamiento de suelo y/o aguas contaminadas. Argentina Patent 130100620. Boletín Oficial p. 58; Smith, S.E., Read, D.J., (2008) Mycorrhizal symbiosis, , 3rd ed, New York: Academic Press 
504 |a Vymazal, J., (2008) Wastewater treatment, plant dynamics and management in constructed and natural wetlands, , Netherlands: Springer 
504 |a Wang, X., Chen, C., Wang, J., Phytoremediation of strontium contaminated soil by Sorghum bicolor (L) Moench and soil microbial community level physiological profiles (CLPPs) (2017) Environ Sci Pollut Res, 24 (8), pp. 7668-7678 
504 |a Wynn, T.M., Liehr, S.K., Development of a constructed subsurface-flow wetland simulation model (2001) Ecol Engin, 165, pp. 19-536 
504 |a Wu, S., Zhang, X., Sun, Y., Wu, Z., Li, T., Hu, Y., Lv, J., Zhang, J., Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses (2016) J Hazard Mater, 316, pp. 34-42 
504 |a Xue, S.G., Chen, Y.X., Reeves, R.D., Baker, A.J., Lin, Q., Fernando, D.R., Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae) (2004) Environ Pollut, 131 (3), pp. 393-399 
504 |a Yang, Y., Liang, Y., Han, X., Chiu, T.Y., Ghosh, A., Chen, H., Tang, M., The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil (2016) Sci Rep, 6, p. 20469 
520 3 |a We present a novel constructed wetland called a vegetable depuration module (VDM) as a pilot test of a bioremediation system (BS) for decontaminating water and soil polluted with heavy metals. The VDM consisted of a pool filled with stones of different granulometry and a substrate top layer composed of a mixture of soil and volcanic ash (50:50, v/v) supplemented with 350 ppm Zn. The BS of sunflower plants colonized by the arbuscular mycorrhizal fungus Rhizophagus intraradices was planted in the VDM. Initially, the substrate registered high concentrations of Zn, Cr, Mn, Cu, and Sr, and had Eh > +500 mV and pH 8.4. Irrigation with a Cu solution by vertical flow was carried out. After 3 months, bioaccumulation factors ranged from 1.00 to 8.90, and translocation rates were >1 for Sr and Cu. Total metals extracted by the BS and percolation were 31%, 34%, 50%, 45%, and 57% for Zn, Cu, Mn, Cr, and Sr, respectively. Only the BS was capable of extracting 94% of Cu and 38% of Zn. VDM allowed us to calibrate the extractive performance of the studied elements in BS. This biotechnological development holds great potential for phytoremediation of polluted areas. © 2019, © 2019 Taylor & Francis Group, LLC.  |l eng 
593 |a Comisión Nacional de Energía Atómica, International Center for Earth Sciences, Complejo Minero Fabril San Rafael CMFSR-CNEA, San Rafael, Argentina 
593 |a Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina 
593 |a Instituto de Biodiversidad y Biología Experimental y Aplicada, IBBEA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Facultad Regional San Rafael, Universidad Tecnológica Nacional, San Rafael, Argentina 
593 |a GT Ingeniería S.A, Mendoza, Argentina 
690 1 0 |a BIOREMEDIATION SYSTEM 
690 1 0 |a ENGINEERING SCALING 
690 1 0 |a HEAVY METALS 
690 1 0 |a VEGETABLE DEPURATION MODULE 
700 1 |a Silvani, V.A. 
700 1 |a Cerioni, J. 
700 1 |a Visciglia, M. 
700 1 |a Benavidez, M. 
700 1 |a Godeas, A. 
773 0 |d Taylor and Francis Inc., 2019  |p Int. J. Phytorem.  |x 15226514  |w (AR-BaUEN)CENRE-5302  |t International Journal of Phytoremediation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063424819&doi=10.1080%2f15226514.2019.1583634&partnerID=40&md5=2439bd10482f30fcfb665bc5c9b44c52  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/15226514.2019.1583634  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15226514_v_n_p_Scotti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15226514_v_n_p_Scotti  |y Registro en la Biblioteca Digital 
961 |a paper_15226514_v_n_p_Scotti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86786