Constraining quantum collapse inflationary models with current data: The semiclassical approach

The hypothesis of the self-induced collapse of the inflaton wave function was introduced as a candidate for the physical process responsible for the emergence of inhomogeneity and anisotropy at all scales. In particular, we consider different proposal for the precise form of the dynamics of the infl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Piccirilli, M.P
Otros Autores: León, G., Landau, S.J, Benetti, M., Sudarsky, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: World Scientific Publishing Co. Pte Ltd 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14173caa a22015257a 4500
001 PAPER-25828
003 AR-BaUEN
005 20230518205758.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85059131977 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Piccirilli, M.P. 
245 1 0 |a Constraining quantum collapse inflationary models with current data: The semiclassical approach 
260 |b World Scientific Publishing Co. Pte Ltd  |c 2019 
506 |2 openaire  |e Política editorial 
504 |a Starobinsky, A.A., (1980) Phys. Lett. B, 91, p. 99 
504 |a Guth, A.H., (1981) Phys. Rev. D, 23, p. 347 
504 |a Linde, A.D., (1982) Phys. Lett. B, 108, p. 389 
504 |a Albrecht, A., Steinhardt, P.J., (1982) Phys. Rev. Lett., 48, p. 1220 
504 |a Mukhanov, V.F., Chibisov, G.V., (1981) J. Exp. Theor. Phys. Lett., 33, p. 532. , Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549 
504 |a Mukhanov, V.F., Chibisov, G.V., (1982) Sov. Phys. J. Exp. Theor. Phys., 56, p. 258. , Zh. Eksp. Teor. Fiz. 83 (1982) 475 
504 |a Starobinsky, A.A., (1982) Phys. Lett. B, 117, p. 175 
504 |a Guth, A.H., Pi, S.Y., (1982) Phys. Rev. Lett., 49, p. 1110 
504 |a Hawking, S.W., (1982) Phys. Lett. B, 115, p. 295 
504 |a Bardeen, J.M., Steinhardt, P.J., Turner, M.S., (1983) Phys. Rev. D, 28, p. 679 
504 |a Perez, A., Sahlmann, H., Sudarsky, D., (2005) Class. Quantum Grav., 23, p. 2317 
504 |a Sudarsky, D., (2011) Int. J. Mod. Phys. D, 20, p. 509 
504 |a Landau, S., Léon, G., Sudarsky, D., (2013) Phys. Rev. D, 88, p. 023526 
504 |a De Uńanue, A., Sudarsky, D., (2008) Phys. Rev. D, 78, p. 043510 
504 |a Léon, G., Sudarsky, D., (2010) Class. Quantum Grav., 27, p. 225017 
504 |a Diez-Tejedor, A., Sudarsky, D., (2012) J. Cosmol. Astropart. Phys., 7, p. 45 
504 |a Léon, G., De Uńanue, A., Sudarsky, D., (2011) Class. Quantum Grav., 28, p. 155010 
504 |a Landau, S.J., Sćoccola, C.G., Sudarsky, D., (2012) Phys. Rev. D, 85, p. 123001 
504 |a Léon, G., Landau, S.J., Piccirilli, M.P., (2015) Eur. Phys. J. C, 75, p. 393 
504 |a Canate, P., Pearle, P., Sudarsky, D., (2013) Phys. Rev. D, 87, p. 104024 
504 |a Penrose, R., (1996) Gen. Relativ. Gravit., 28, p. 581 
504 |a Diosi, L., (1987) Phys. Lett. A, 120, p. 377 
504 |a Diosi, L., (1989) Phys. Rev. A, 40, p. 1165 
504 |a Ghirardi, G., Rimini, A., Weber, T., (1986) Phys. Rev. D, 34, p. 470 
504 |a Pearle, P.M., (1989) Phys. Rev. A, 39, p. 2277 
504 |a Bassi, A., Ghirardi, G.C., (2003) Phys. Rep., 379, p. 257 
504 |a Bassi, A., Lochan, K., Satin, S., Singh, T.P., Ulbricht, H., (2013) Rev. Mod. Phys., 85, p. 471 
504 |a Grishchuk, L., Sidorov, Y., (1990) Phys. Rev. D, 42, p. 3413 
504 |a Grishchuk, L., Haus, H.A., Bergman, K., (1992) Phys. Rev. D, 46, p. 1440 
504 |a Polarski, D., Starobinsky, A.A., (1996) Class. Quantum Grav., 13, p. 377 
504 |a Lesgourgues, J., Polarski, D., Starobinsky, A.A., (1997) Nucl. Phys. B, 497, p. 479 
504 |a Grishchuk, L.P., Martin, J., (1997) Phys. Rev. D, 56, p. 1924 
504 |a Kiefer, C., Polarski, D., (2009) Adv. Sci. Lett., 2, p. 164 
504 |a Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A., (2007) Class. Quantum Grav., 24, p. 1699 
504 |a Egusquiza, I.L., Feinstein, A., Perez Sebastian, M.A., Valle Basagoiti, M.A., (1998) Class. Quantum Grav., 15, p. 1927 
504 |a Burgess, C.P., Holman, R., Hoover, D., (2008) Phys. Rev. D, 77, p. 063534 
504 |a Albrecht, A., Ferreira, P., Joyce, M., Prokopec, T., (1994) Phys. Rev. D, 50, p. 4807 
504 |a Nomura, Y., (2011) J. High Energy Phys., 11, p. 063 
504 |a Nomura, Y., (2013) Found. Phys., 43, p. 978 
504 |a Mukhanov, V., (2005) Physical Foundations of Cosmology, , Cambridge University Press, New York 
504 |a Valentini, A., ; Pinto-Neto, N., Santos, G., Struyve, W., (2012) Phys. Rev. D, 85, p. 083506 
504 |a Benetti, M., Landau, S.J., Alcaniz, J.S., (2016) J. Cosmol. Astropart. Phys., 1612, p. 035 
504 |a Diez-Tejedor, A., Leon, G., Sudarsky, D., (2012) Gen. Relativ. Gravit., 44, p. 2965 
504 |a Martin, J., Vennin, V., Peter, P., (2012) Phys. Rev. D, 86, p. 103524 
504 |a Das, S., Lochan, K., Sahu, S., Singh, T., (2013) Phys. Rev. D, 88, p. 085020 
504 |a Das, S., Sahu, S., Banerjee, S., Singh, T.P., (2014) Phys. Rev. D, 90, p. 043503 
504 |a Léon, G., Bengochea, G.R., (2016) Eur. Phys. J. C, 76, p. 29 
504 |a Mariani, M., Bengochea, G.R., Léon, G., (2016) Phys. Lett. B, 752, p. 344 
504 |a Banerjee, S., Das, S., Sravan Kumar, K., Singh, T.P., (2017) Phys. Rev. D, 95, p. 103518 
504 |a Alexander, S., Jyoti, D., Magueijo, J., (2016) Phys. Rev. D, 94, p. 043502 
504 |a Léon, G., Kraiselburd, L., Landau, S.J., (2015) Phys. Rev. D, 92, p. 083516 
504 |a Léon, G., Majhi, A., Okon, E., Sudarsky, D., (2017) Phys. Rev. D, 96, p. 101301 
504 |a Léon, G., Majhi, A., Okon, E., Sudarsky, D., (2018) Phys. Rev. D, 98 (2), p. 023512 
504 |a Kuo, C.-I., Ford, L.H., (1993) Phys. Rev. D, 47, p. 4510 
504 |a Brandenberger, R.H., Feldman, H., Mukhanov, V.F., Evolution of the universe and its observational quest (1993) Proc. 37th Yamada Conference, pp. 19-30. , Tokyo, Japan 
504 |a Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H., Theory of cosmological perturbations. Part 1 Classical perturbations. Part 2 Quantum theory of perturbations. Part3 Extensions (1992) Phys. Rept., 215, p. 203 
504 |a Eppley, K., Hannah, E., (1977) Found. Phys., 7, p. 51 
504 |a Mattingly, J., (2006) Phys. Rev. D, 73, p. 064025 
504 |a Huggett, N., Callender, C., (2001) Philos. Sci., 68, p. S382 
504 |a Albers, M., Kiefer, C., Reginatto, M., (2008) Phys. Rev. D, 78, p. 064051 
504 |a Kent, A., (2018) Simple Refutation of the Eppley-Hannah Argument 
504 |a Page, D.N., Geilker, C.D., (1981) Phys. Rev. Lett., 47, p. 979 
504 |a Carlip, S., (2008) Class. Quantum Grav., 25, p. 154010 
504 |a Sudarsky, D., (2014) Fundam. Theor. Phys., 177, p. 349 
504 |a Tilloy, A., Díosi, L., (2016) Phys. Rev. D, 93, p. 024026 
504 |a Léon, G., Bengochea, G.R., Landau, S.J., (2016) Eur. Phys. J. C, 76, p. 407 
504 |a Ade, P.A.R., Planck Collab; Aghanim, N., (2016) Astron. Astrophys., 594, p. A11. , Planck Collaboration 
504 |a Lewis, A., Challinor, A., Lasenby, A., (2000) Astrophys. J., 538, p. 473 
504 |a Lewis, A., Bridle, S., (2002) Phys. Rev. D, 66, p. 103511 
504 |a Feroz, F., Hobson, M.P., Bridges, M., (2009) Mon. Not. R. Astron. Soc., 398, p. 1601 
504 |a Feroz, F., Hobson, M.P., (2008) Mon. Not. R. Astron. Soc., 384, p. 449 
504 |a Feroz, F., Hobson, M.P., Cameron, E., Pettitt, A.N., ; Cameron, E., Pettitt, A., ; Beutler, F., Blake, C., Colless, M., Jones, D.H., Staveley-Smith, L., Campbell, L., Parker, Q., Watson, F., (2011) Mon. Not. R. Astron. Soc., 416, p. 3017 
504 |a Ross, A.J., Samushia, L., Howlett, C., Percival, W.J., Burden, A., Manera, M., (2015) Mon. Not. R. Astron. Soc., 449, p. 835 
504 |a Anderson, L., (2014) Mon. Not. R. Astron. Soc., 441, p. 24. , BOSS Collab 
504 |a Trotta, R., (2007) Mon. Not. R. Astron. Soc., 378, p. 72 
504 |a Benetti, M., Alcaniz, J.S., (2016) Phys. Rev. D, 94, p. 023526 
504 |a Graef, L.L., Benetti, M., Alcaniz, J.S., (2017) J. Cosmol. Astropart. Phys., 1707, p. 013 
504 |a Heavens, A., Fantaye, Y., Sellentin, E., Eggers, H., Hosenie, Z., Kroon, S., Mootoovaloo, A., ; Campista, M., Benetti, M., Alcaniz, J., ; Jeffreys, H., (1998) Theory of Probability, , 3rd edn., Oxford University Press, First Published in the Oxford Classics series 
504 |a Riess, A.G., Macri, L., Casertano, S., Sosey, M., Lampeitl, H., Ferguson, H.C., Filippenko, A.V., Sarkar, D., (2009) Astrophys. J., 699, p. 539 
504 |a Bernal, J.L., Verde, L., Riess, A.G., (2016) J. Cosmol. Astropart. Phys., 1610, p. 019 
504 |a Benetti, M., Graef, L.L., Alcaniz, J.S., (2017) J. Cosmol. Astropart. Phys., 1704, p. 003 
504 |a Zhang, X., (2017) Sci. China Phys. Mech. Astron., 60, p. 060421 
504 |a Addison, G.E., Watts, D.J., Bennett, C.L., Halpern, M., Hinshaw, G., Weiland, J.L., ; Carvalho, G.C., Bernui, A., Benetti, M., Carvalho, J.C., Alcaniz, J.S., (2016) Phys. Rev. D, 93, p. 023530 
520 3 |a The hypothesis of the self-induced collapse of the inflaton wave function was introduced as a candidate for the physical process responsible for the emergence of inhomogeneity and anisotropy at all scales. In particular, we consider different proposal for the precise form of the dynamics of the inflaton wave function: (i) the GRW-type collapse schemes proposals based on spontaneous individual collapses which generate nonvanishing expectation values of various physical quantities taken as ansatz modifications of the standard inflationary scenario; (ii) the proposal based on a Continuous Spontaneous Localization (CSL) type modification of the Schrödinger evolution of the inflaton wave function, based on a natural choice of collapse operator. We perform a systematic analysis within the semi-classical gravity approximation, of the standing of those models considering a full quasi-de Sitter expansion scenario. We note that the predictions for the Cosmic Microwave Background (CMB) temperature and polarization spectrum differ slightly from those of the standard cosmological model. We also analyze these proposals with a Bayesian model comparison using recent CMB and Baryonic Acoustic Oscillations (BAO) data. Our results show a moderate preference of the joint CMB and BAO data for one of the studied collapse schemes model over the ACDM one, while there is no preference when only CMB data are considered. Additionally, analysis using CMB data provide the same Bayesian evidence for both the CSL and Standard Models, i.e. the data have no preference between the simplicity of the LCDM model and the complexity of the collapse scenario. © 2019 World Scientific Publishing Company.  |l eng 
536 |a Detalles de la financiación: National Science and Technology Development Agency 
536 |a Detalles de la financiación: Universidad Nacional de La Plata 
536 |a Detalles de la financiación: Consejo Nacional de Ciencia y Tecnología, 101712 
536 |a Detalles de la financiación: Instituto Nazionale di Fisica Nucleare, PIP 11220120100504 CONICET 
536 |a Detalles de la financiación: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro 
536 |a Detalles de la financiación: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro 
536 |a Detalles de la financiación: IG 100316 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT-2016-0081, G140 
536 |a Detalles de la financiación: The authors acknowledge the use of the supercluster Mitzli at UNAM for the statistical analyses and thank the people of DGSCA-UNAM for computational and technical support. MB acknowledges financial support from the Funda¸cão Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ – fellowship Nota 10), and is also supported by INFN, Naples section, QGSKY project. MPP, GL and SL are supported by PIP 11220120100504 CONICET and by the National Agency for the Promotion of Science and Technology (ANPCYT) of Argentina grant PICT-2016-0081; and by grant G140 from UNLP. DS acknowledges partial financial support from DGAPA-UNAM project IG 100316 and by CONACYT project 101712, the FAE-Network of CONACYT, as well as the sabbatical fellowships from CO-MEX-US (Fullbright–Garcia Robles) and from DGAPA-UNAM (Paspa). The authors acknowledge the use of CosmoMC71 and Multinest code.72–74 
593 |a Grupo de Astrofísica, Relatividad y Cosmología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de la Plata, Paseo del Bosque S/N 1900 La Plata, Pcia de Buenos Aires, Argentina 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria - PabI, Buenos Aires, 1428, Argentina 
593 |a Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro, 20921-400, RJ, Brazil 
593 |a University of Naples Federico II, Physics Department Ettore Pancini, Monte sant'Angelo Campus, Via Cinthia 21, Naples, I-80126, Italy 
593 |a Istituto Nazionale di Fisica Nucleare (INFN), Sez. Napoli, Monte sant'Angelo Campus, Via Cinthia 9, Naples, I-80126, Italy 
593 |a Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, México D.F., 04510, Mexico 
690 1 0 |a COSMOLOGICAL PARAMETERS FROM CMB 
690 1 0 |a INFLATION 
690 1 0 |a PHYSICS OF THE EARLY UNIVERSE 
700 1 |a León, G. 
700 1 |a Landau, S.J. 
700 1 |a Benetti, M. 
700 1 |a Sudarsky, D. 
773 0 |d World Scientific Publishing Co. Pte Ltd, 2019  |g v. 28  |k n. 2  |p Int. J. Mod. Phys. D  |x 02182718  |w (AR-BaUEN)CENRE-368  |t International Journal of Modern Physics D 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059131977&doi=10.1142%2fS021827181950041X&partnerID=40&md5=fafb304ae09310f58719d076cd93654c  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1142/S021827181950041X  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02182718_v28_n2_p_Piccirilli  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02182718_v28_n2_p_Piccirilli  |y Registro en la Biblioteca Digital 
961 |a paper_02182718_v28_n2_p_Piccirilli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86781