Nonlocal problems in perforated domains

In this paper, we analyse nonlocal equations in perforated domains. We consider nonlocal problems of the form with x in a perforated domain. Here J is a nonsingular kernel. We think about as a fixed set ω from where we have removed a subset that we call the holes. We deal both with the Neumann and D...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pereira, M.C
Otros Autores: Rossi, J.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Cambridge University Press 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03100caa a22003617a 4500
001 PAPER-25825
003 AR-BaUEN
005 20230518205757.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85060610426 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Pereira, M.C. 
245 1 0 |a Nonlocal problems in perforated domains 
260 |b Cambridge University Press  |c 2019 
270 1 0 |m Pereira, M.C.; Dpto. de Matemática Aplicada, IME, Universidade de São Paulo, Rua do Matão 1010, Brazil; email: marcone@ime.usp.br 
506 |2 openaire  |e Política editorial 
520 3 |a In this paper, we analyse nonlocal equations in perforated domains. We consider nonlocal problems of the form with x in a perforated domain. Here J is a nonsingular kernel. We think about as a fixed set ω from where we have removed a subset that we call the holes. We deal both with the Neumann and Dirichlet conditions in the holes and assume a Dirichlet condition outside ω. In the latter case we impose that u vanishes in the holes but integrate in the whole ℝN (B = ℝN) and in the former we just consider integrals in ℝN minus the holes (B = ℝN ωωϵ). Assuming weak convergence of the holes, specifically, under the assumption that the characteristic function of has a weak limit, weakly∗ in L∞(ω), we analyse the limit as ϵ → 0 of the solutions to the nonlocal problems proving that there is a nonlocal limit problem. In the case in which the holes are periodically removed balls, we obtain that the critical radius is of the order of the size of the typical cell (that gives the period). In addition, in this periodic case, we also study the behaviour of these nonlocal problems when we rescale the kernel in order to approximate local PDE problems. © Royal Society of Edinburgh 2019.  |l eng 
536 |a Article in Press 
593 |a Dpto. de Matemática Aplicada, IME, Universidade de São Paulo, Rua do Matão 1010, São Paulo - SP, Brazil 
593 |a Dpto. de Matemáticas, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria Pab 1, Buenos Aires, 1428, Argentina 
690 1 0 |a DIRICHLET PROBLEM 
690 1 0 |a NEUMANN PROBLEM 
690 1 0 |a NONLOCAL EQUATIONS 
690 1 0 |a PERFORATED DOMAINS 
700 1 |a Rossi, J.D. 
773 0 |d Cambridge University Press, 2019  |p Proc. R. Soc. Edinburgh Sect. A Math.  |x 03082105  |t Proceedings of the Royal Society of Edinburgh Section A: Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060610426&doi=10.1017%2fprm.2018.130&partnerID=40&md5=42bc33fb28e089fc8d6f7e44c49be571  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1017/prm.2018.130  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03082105_v_n_p_Pereira  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03082105_v_n_p_Pereira  |y Registro en la Biblioteca Digital 
961 |a paper_03082105_v_n_p_Pereira  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86778