Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA

We describe a recombineering-based method for the genetic manipulation of lytically replicating bacteriophages, focusing on mycobacteriophages. The approach utilizes recombineering-proficient strains of Mycobacterium smegmatis and employs a cotransformation strategy with purified phage genomic DNA a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marinelli, L.J
Otros Autores: Piuri, M., Hatfull, G.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Humana Press Inc. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11500caa a22011897a 4500
001 PAPER-25809
003 AR-BaUEN
005 20230518205756.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85058900261 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Marinelli, L.J. 
245 1 0 |a Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA 
260 |b Humana Press Inc.  |c 2019 
270 1 0 |m Marinelli, L.J.; Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesUnited States; email: laurajmarinelli@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Hatfull, G.F., Hendrix, R.W., Bacteriophages and their genomes (2011) Curr Opin Virol, 1, pp. 298-303 
504 |a Katsura, I., Isolation of lambda prophage mutants defective in structural genes: Their use for the study of bacteriophage morphogenesis (1976) Mol Gen Genet MGG, 148, p. 31 
504 |a Katsura, I., Hendrix, R.W., Length determination in bacteriophage lambda tails (1984) Cell, 39, p. 691 
504 |a Selick, H.E., Kreuzer, K.N., Alberts, B.M., The bacteriophage T4 insertion/substitution vector system. A method for introducing site-specific mutations into the virus chromosome (1988) J Biol Chem, 263, p. 11336 
504 |a Struthers-Schlinke, J.S., Robins, W.P., Kemp, P., Molineux, I.J., The internal head protein Gp16 controls DNA ejection from the bacteriophage T7 virion (2000) J Mol Biol, 301, p. 35 
504 |a Moak, M., Molineux, I.J., Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection (2000) Mol Microbiol, 37, p. 345 
504 |a Oppenheim, A.B., Rattray, A.J., Bubunenko, M., Thomason, L.C., Court, D.L., In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides (2004) Virology, 319, p. 185 
504 |a Murray, N.E., The impact of phage lambda: From restriction to recombineering (2006) Biochem Soc Trans, 34, p. 203 
504 |a Piuri, M., Hatfull, G.F., A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells (2006) Mol Microbiol, 62, p. 1569 
504 |a Martel, B., Moineau, S., CRISPR-Cas: An efficient tool for genome engineering of virulent bacteriophages (2014) Nucleic Acids Res, 42, p. 9504 
504 |a van Kessel, J.C., Hatfull, G.F., Recombineering in Mycobacterium tuberculosis (2007) Nat Methods, 4, p. 147 
504 |a van Kessel, J.C., Hatfull, G.F., Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: Characterization of antimycobacterial drug targets (2008) Mol Microbiol, 67, p. 1094 
504 |a van Kessel, J.C., Hatfull, G.F., Mycobacterial recombineering (2008) Methods Mol Biol, 435, p. 203 
504 |a van Kessel, J.C., Marinelli, L.J., Hatfull, G.F., Recombineering mycobacteria and their phages (2008) Nat Rev Microbiol, 6, p. 851 
504 |a Court, D.L., Sawitzke, J.A., Thomason, L.C., Genetic engineering using homologous recombination (2002) Annu Rev Genet, 36, p. 361 
504 |a Little, J.W., An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction (1967) J Biol Chem, 242, p. 679 
504 |a Joseph, J.W., Kolodner, R., Exonuclease VIII of Escherichia coli. II. Mechanism of action (1983) J Biol Chem, 258 
504 |a Datsenko, K.A., Wanner, B.L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products (2000) Proc Natl Acad Sci U S A, 97, p. 6640 
504 |a Yu, D., An efficient recombination system for chromosome engineering in Escherichia coli (2000) Proc Natl Acad Sci U S A, 97, p. 5978 
504 |a Hall, S.D., Kolodner, R.D., Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein (1994) Proc Natl Acad Sci U S A, 91, p. 3205 
504 |a Kolodner, R., Hall, S.D., Luisi-Deluca, C., Homologous pairing proteins encoded by the Escherichia coli recE and recT genes (1994) Mol Microbiol, 11, p. 23 
504 |a Noirot, P., Kolodner, R.D., DNA strand invasion promoted by Escherichia coli RecT protein (1998) J Biol Chem, 273, p. 12274 
504 |a Li, Z., Karakousis, G., Chiu, S.K., Reddy, G., Radding, C.M., The beta protein of phage lambda promotes strand exchange (1998) J Mol Biol, 276, p. 733 
504 |a Rybalchenko, N., Golub, E.I., Bi, B., Radding, C.M., Strand invasion promoted by recombination protein beta of coliphage (2004) Lambda. Proc Natl Acad Sci U S A, 101, p. 17056 
504 |a Murphy, K.C., Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli (1998) J Bacteriol, 180, p. 2063 
504 |a Zhang, Y., Buchholz, F., Muyrers, J.P., Stewart, A.F., A new logic for DNA engineering using recombination in Escherichia coli (1998) Nat Genet, 20, p. 123 
504 |a Muyrers, J.P., Zhang, Y., Testa, G., Stewart, A.F., Rapid modification of bacterial artificial chromosomes by ET-recombination (1999) Nucleic Acids Res, 27, p. 1555 
504 |a Murphy, K.C., Campellone, K.G., Poteete, A.R., PCR-mediated gene replacement in Escherichia coli (2000) Gene, 246, p. 321 
504 |a Ellis, H.M., Yu, D., Ditizio, T., Court, D.L., High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides (2001) Proc Natl Acad Sci U S A, 98, p. 6742 
504 |a Lee, E.C., A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA (2001) Genomics, 73, p. 56 
504 |a Muyrers, J.P., Zhang, Y., Stewart, A.F., Techniques: Recombinogenic engineering—new options for cloning and manipulating DNA (2001) Trends Biochem Sci, 26, p. 325 
504 |a Marinelli, L.J., BRED: A simple and powerful tool for constructing mutant and recombinant bacteriophage genomes (2008) Plos One, 3 
504 |a Marinelli, L.J., Hatfull, G.F., Piuri, M., Recombineering: A powerful tool for modification of bacteriophage genomes (2012) Bacteriophage, 2, p. 5 
504 |a Payne, K., Sun, Q., Sacchettini, J., Hatfull, G.F., Mycobacteriophage Lysin B is a novel mycolylarabinogalactan esterase (2009) Mol Microbiol, 73, p. 367 
504 |a Catalao, M.J., Gil, F., Moniz-Pereira, J., Pimentel, M., The mycobacteriophage Ms6 encodes a chaperone-like protein involved in the endolysin delivery to the peptidoglycan (2010) Mol Microbiol, 77, p. 672 
504 |a Catalao, M.J., Milho, C., Gil, F., Moniz-Pereira, J., Pimentel, M., A second endolysin gene is fully embedded in-frame with the lysA gene of mycobacteriophage Ms6 (2011) Plos One, 6 
504 |a Catalao, M.J., Gil, F., Moniz-Pereira, J., Pimentel, M., Functional analysis of the holin-like proteins of mycobacteriophage Ms6 (2011) J Bacteriol, 193, p. 2793 
504 |a Savinov, A., Pan, J., Ghosh, P., Hatfull, G.F., The Bxb1 gp47 recombination directionality factor is required not only for prophage excision, but also for phage DNA replication (2012) Gene, 495, p. 42 
504 |a Jacobs-Sera, D., On the nature of mycobacteriophage diversity and host preference (2012) Virology, 434, p. 187 
504 |a Dedrick, R.M., Functional requirements for bacteriophage growth: Gene essenti-ality and expression in mycobacteriophage Giles (2013) Mol Microbiol, 88, p. 577 
504 |a da Silva, J.L., Application of BRED technology to construct recombinant D29 reporter phage expressing EGFP (2013) FEMS Microbiol Lett, 344, p. 166 
504 |a Piuri, M., Rondon, L., Urdaniz, E., Hatfull, G.F., Generation of affinity-tagged fluoromycobacteriophages by mixed assembly of phage capsids (2013) Appl Environ Microbiol, 79, p. 5608 
504 |a Feher, T., Karcagi, I., Blattner, F.R., Posfai, G., Bacteriophage recombineering in the lytic state using the lambda red recombinases (2012) Microb Biotechnol, 5, p. 466 
504 |a Shin, H., Lee, J.H., Yoon, H., Kang, D.H., Ryu, S., Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC (2014) Appl Environ Microbiol, 80, p. 374 
504 |a Swaminathan, S., Rapid engineering of bacterial artificial chromosomes using oligonucleotides (2001) Genesis, 29, p. 14 
520 3 |a We describe a recombineering-based method for the genetic manipulation of lytically replicating bacteriophages, focusing on mycobacteriophages. The approach utilizes recombineering-proficient strains of Mycobacterium smegmatis and employs a cotransformation strategy with purified phage genomic DNA and a mutagenic substrate, which selects for only those cells that are competent to take up DNA. The cotransformation method, combined with the high rates of recombination obtained in M. smegmatis recombineering strains, allows for the efficient and rapid generation of bacteriophage mutants. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.  |l eng 
593 |a Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina 
593 |a Laboratorio “Bacteriófagos y Aplicaciones Biotecnológicas”, Departamento de Química Biológica, FCEyN, UBA, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA, United States 
690 1 0 |a BRED 
690 1 0 |a ELECTROPORATION 
690 1 0 |a MYCOBACTERIA 
690 1 0 |a MYCOBACTERIOPHAGE 
690 1 0 |a RECOMBINEERING 
690 1 0 |a BACTERIOPHAGE DNA 
690 1 0 |a GENOMIC DNA 
690 1 0 |a OLIGONUCLEOTIDE 
690 1 0 |a RAC PROTEIN 
690 1 0 |a RECOMBINANT PROTEIN 
690 1 0 |a RECT PROTEIN 
690 1 0 |a BACTERIOPHAGE RECOMBINEERING OF ELECTROPORATED DNA 
690 1 0 |a BACTERIUM CULTURE 
690 1 0 |a ELECTROPORATION 
690 1 0 |a GENETIC ENGINEERING 
690 1 0 |a GENETIC MANIPULATION 
690 1 0 |a GENETIC RECOMBINATION 
690 1 0 |a METHODOLOGY 
690 1 0 |a MUTANT 
690 1 0 |a MYCOBACTERIOPHAGE 
690 1 0 |a MYCOBACTERIUM SMEGMATIS 
690 1 0 |a NATURAL SCIENCE 
690 1 0 |a NONHUMAN 
690 1 0 |a POLYMERASE CHAIN REACTION 
690 1 0 |a PROPHAGE 
690 1 0 |a RECOMBINEERING 
700 1 |a Piuri, M. 
700 1 |a Hatfull, G.F. 
773 0 |d Humana Press Inc., 2019  |g v. 1898  |h pp. 69-80  |p Methods Mol. Biol.  |x 10643745  |t Methods in Molecular Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058900261&doi=10.1007%2f978-1-4939-8940-9_6&partnerID=40&md5=f889c0ea32d23410f9db1b849e19b35e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/978-1-4939-8940-9_6  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10643745_v1898_n_p69_Marinelli  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10643745_v1898_n_p69_Marinelli  |y Registro en la Biblioteca Digital 
961 |a paper_10643745_v1898_n_p69_Marinelli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86762