Relativistic corrections to the electric field gradient given by linear response elimination of the small component formalism
This article is concerned with the analysis of relativistic corrections to the electric field gradients (EFGs) via the linear response elimination of the small component scheme (LRESC). Originally developed for magnetic shielding constant, LRESC has been applied in many molecular properties and pres...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
John Wiley and Sons Inc.
2019
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| Sumario: | This article is concerned with the analysis of relativistic corrections to the electric field gradients (EFGs) via the linear response elimination of the small component scheme (LRESC). Originally developed for magnetic shielding constant, LRESC has been applied in many molecular properties and presented in this work describing EFG for the first time. Within LRESC we obtain relativistic corrections to EFG in terms of 1/c (the speed of light) formally showing that, up to first order (1/c 2 ), there are no virtual pair contributions; recovering the so-called “no-pair” approximation. Virtual pair contributions and triplet corrections arise at second order (1/c 4 ). To assess the LRESC description of EFGs at Hartree-Fock and DFT levels, we applied it to a simple heavy atom containing set of benchmark molecular systems, HX (X = F, Cl, Br, I, and At), and to linear HgX 2 (X = Cl, Br, and I) molecules. Fully relativistic four-component calculations were also done and taken as reference. The most important relativistic correction given by LRESC is a Mass-velocity related contribution (Δ Mv ) which represents close to 80% of the nonrelativistic result for At in HAt molecule. For Hg in HgX 2 molecular systems, Δ Mv is also the most important correction representing close to 60% of the nonrelativistic part. We also describe the overall behavior of LRESC corrections in HgX 2 molecules showing low varying results when the weight of the halogen, X, increases. In this kind of molecular system, correlation effects appear in combination to relativity, making them a challenging group to be studied. LRESC results are in very good agreement with previous results for halogen halides, but it shows a need of inclusion of higher order contributions, beyond 1/c 2 , when applied to Hg in HgX 2 set, although LRESC describes accurately At atom, heavier than Hg. © 2019 Wiley Periodicals, Inc. |
|---|---|
| Bibliografía: | Pound, R.V., (1950) Phys. Rev., 79, p. 685 Dehmelt, H.G., Kruger, H., (1950) Naturwiss, 37, p. 111 Mössbauer, R.L., (1958) Z. Phys., 151 (2), p. 124 Haas, H., Shirley, D.A., (1973) J. Chem. Phys., 58, p. 3339 Van Stralen, J.N.P., Visscher, L., (2002) J. Chem. Phys., 117, p. 3103 Haiduke, R.L.A., da Silva, A.B.F., Visscher, L., (2006) J. Chem. Phys., 125, p. 064301 da Silva, A.B.F., Haiduke, R.L.A., Visscher, L., (2007) Chem. Phys. Lett., 445, p. 95 Wolf, A., Reiher, M., (2006) J. Chem. Phys., 124, p. 064102 Cheng, L., Gauss, J., (2011) J. Chem. Phys., 134, p. 244112 Visscher, L., Enevoldsen, T., Saue, T., Oddershede, J., (1998) J. Chem. Phys., 109, p. 9677 Malkin, I., Malkina, O.L., Malkin, V.G., (2002) Chem. Phys. Lett., 361, p. 231 Van Stralen, J.N.P., Visscher, L., (2003) Mol. Phys., 101, p. 2115 Jacob, C.R., Visscher, L., Thierfelder, C., Schwerdtfeger, P., (2007) J. Chem. Phys., 127, p. 204303 Mastalerz, R., Barone, G., Lindh, R., Reiher, M., (2007) J. Chem. Phys., 127, p. 074105 Cheng, L., Gauss, J., (2011) J. Chem. Phys., 135, p. 084114 Arcisauskaite, V., Knecht, S., Sauer, S.P.A., Hemmingsen, L., (2012) Phys. Chem. Chem. Phys., 14, p. 2651 Arcisauskaite, V., Knecht, S., Sauer, S.P.A., Hemmingsen, L., (2012) Phys. Chem. Chem. Phys., 14, p. 16070 Filatov, M., Zou, W., Cremer, D., (2012) J. Chem. Phys., 137, p. 054113 Filatov, M., Zou, W., Cremer, D., (2013) Curr. Inorg. Chem., 3, p. 284 Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Romero, R.H., (2003) J. Chem. Phys., 118, p. 471 Ruiz de Azúa, M.C., Melo, J.I., Giribet, C.G., (2003) Mol. Phys., 101, p. 3103 Aucar, I.A., Gomez, S.S., Ruiz de Aza, M.C., Giribet, C.G., (2012) J. Chem. Phys., 136, p. 204119 Aucar, I.A., Gomez, S.S., Giribet, C.G., Aucar, G.A., (2016) Phys. Chem. Chem. Phys., 18, p. 23572 Aucar, I.A., Gomez, S.S., Giribet, C.G., Ruiz de Aza, M.C., (2014) J. Chem. Phys., 141, p. 194103 Aucar, G.A., Melo, J.I., Aucar, I.A., Maldonado, A.F., (2018) Int. J. Quantum Chem., 118 (1) Jackson, J.D., (1999) Classical Electrodynamics, , 3rd, ed.,, Wiley, New York Pernpointner, M., Accurate determination of electric field gradients for heavy atoms and molecules (2004) Relativistic Electronic Structure Theory, volume 14 of Theoretical and Computational Chemistry, p. 289. , (Ed, P. Schwerdtfeger, Elsevier, Ámsterdam, p., Ch. 5 Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Provasi, P.F., (2004) J. Chem. Phys., 121, p. 6798 Chen-Tannoudji, C., Dupont-Roc, J., Grynberg, G., (1997) Photons and Atoms, , Wiley, New York Reiher, M., Wolf, A., (2009) Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science, , Wiley-VCH, Weinheim Kagakkai, N.B., (1984) Kagaku Benran, II, p. 649. , 3rd, ed., Maruzen Company, LTD, Tokyo, p Saue, T., Visscher, L., Jensen, H.J.A., Bast, R., Bakken, V., Dyall, K.G., Dubillard, S., Yamamoto, S., (2016), http://www.diracprogram.org, DIRAC, a relativistic ab initio electronic structure program, Release DIRAC16,,) (accessed March 2019); (2015), http://daltonprogram.org, Dalton, a molecular electronic structure program, Release Dalton2016.X,,) (accessed March 2019); Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., gren, H., (2014) WIREs Comput. Mol. Sci., 4, p. 269 Dyall, K.G., (2002) Theor. Chem. Acc., 108, p. 335 Dyall, K.G., (2006) Theor. Chem. Acc., 115, p. 441 Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648 Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., (1994) J. Phys. Chem., 98, p. 11623 Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098 Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785 Ernzerhof, M., Scuseria, G.E., (1999) J. Chem. Phys., 110, p. 5029 Adamo, C., Barone, V., (1999) J. Chem. Phys., 110, p. 6158 Perdew, J.P., (1986) Phys. Rev. B, 33, p. 8822 Reiher, M., Wolf, A., (2004) J. Chem. Phys., 121, p. 2037 Reiher, M., Wolf, A., (2004) J. Chem. Phys., 121, p. 10945 Maldonado, A.F., Aucar, G.A., (2009) Phys. Chem. Chem. Phys., 11, p. 5615 Melo, J.I., Maldonado, A., Aucar, G.A., (2011) Theor. Chem. Acc., 129, p. 483 Maldonado, A.F., Aucar, G.A., (2014) J. Phys. Chem. A, 118, p. 7863 |
| ISSN: | 00207608 |
| DOI: | 10.1002/qua.25935 |