Relativistic corrections to the electric field gradient given by linear response elimination of the small component formalism

This article is concerned with the analysis of relativistic corrections to the electric field gradients (EFGs) via the linear response elimination of the small component scheme (LRESC). Originally developed for magnetic shielding constant, LRESC has been applied in many molecular properties and pres...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Melo, Juan Ignacio
Otros Autores: Maldonado, A.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Inc. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:This article is concerned with the analysis of relativistic corrections to the electric field gradients (EFGs) via the linear response elimination of the small component scheme (LRESC). Originally developed for magnetic shielding constant, LRESC has been applied in many molecular properties and presented in this work describing EFG for the first time. Within LRESC we obtain relativistic corrections to EFG in terms of 1/c (the speed of light) formally showing that, up to first order (1/c 2 ), there are no virtual pair contributions; recovering the so-called “no-pair” approximation. Virtual pair contributions and triplet corrections arise at second order (1/c 4 ). To assess the LRESC description of EFGs at Hartree-Fock and DFT levels, we applied it to a simple heavy atom containing set of benchmark molecular systems, HX (X = F, Cl, Br, I, and At), and to linear HgX 2 (X = Cl, Br, and I) molecules. Fully relativistic four-component calculations were also done and taken as reference. The most important relativistic correction given by LRESC is a Mass-velocity related contribution (Δ Mv ) which represents close to 80% of the nonrelativistic result for At in HAt molecule. For Hg in HgX 2 molecular systems, Δ Mv is also the most important correction representing close to 60% of the nonrelativistic part. We also describe the overall behavior of LRESC corrections in HgX 2 molecules showing low varying results when the weight of the halogen, X, increases. In this kind of molecular system, correlation effects appear in combination to relativity, making them a challenging group to be studied. LRESC results are in very good agreement with previous results for halogen halides, but it shows a need of inclusion of higher order contributions, beyond 1/c 2 , when applied to Hg in HgX 2 set, although LRESC describes accurately At atom, heavier than Hg. © 2019 Wiley Periodicals, Inc.
Bibliografía:Pound, R.V., (1950) Phys. Rev., 79, p. 685
Dehmelt, H.G., Kruger, H., (1950) Naturwiss, 37, p. 111
Mössbauer, R.L., (1958) Z. Phys., 151 (2), p. 124
Haas, H., Shirley, D.A., (1973) J. Chem. Phys., 58, p. 3339
Van Stralen, J.N.P., Visscher, L., (2002) J. Chem. Phys., 117, p. 3103
Haiduke, R.L.A., da Silva, A.B.F., Visscher, L., (2006) J. Chem. Phys., 125, p. 064301
da Silva, A.B.F., Haiduke, R.L.A., Visscher, L., (2007) Chem. Phys. Lett., 445, p. 95
Wolf, A., Reiher, M., (2006) J. Chem. Phys., 124, p. 064102
Cheng, L., Gauss, J., (2011) J. Chem. Phys., 134, p. 244112
Visscher, L., Enevoldsen, T., Saue, T., Oddershede, J., (1998) J. Chem. Phys., 109, p. 9677
Malkin, I., Malkina, O.L., Malkin, V.G., (2002) Chem. Phys. Lett., 361, p. 231
Van Stralen, J.N.P., Visscher, L., (2003) Mol. Phys., 101, p. 2115
Jacob, C.R., Visscher, L., Thierfelder, C., Schwerdtfeger, P., (2007) J. Chem. Phys., 127, p. 204303
Mastalerz, R., Barone, G., Lindh, R., Reiher, M., (2007) J. Chem. Phys., 127, p. 074105
Cheng, L., Gauss, J., (2011) J. Chem. Phys., 135, p. 084114
Arcisauskaite, V., Knecht, S., Sauer, S.P.A., Hemmingsen, L., (2012) Phys. Chem. Chem. Phys., 14, p. 2651
Arcisauskaite, V., Knecht, S., Sauer, S.P.A., Hemmingsen, L., (2012) Phys. Chem. Chem. Phys., 14, p. 16070
Filatov, M., Zou, W., Cremer, D., (2012) J. Chem. Phys., 137, p. 054113
Filatov, M., Zou, W., Cremer, D., (2013) Curr. Inorg. Chem., 3, p. 284
Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Romero, R.H., (2003) J. Chem. Phys., 118, p. 471
Ruiz de Azúa, M.C., Melo, J.I., Giribet, C.G., (2003) Mol. Phys., 101, p. 3103
Aucar, I.A., Gomez, S.S., Ruiz de Aza, M.C., Giribet, C.G., (2012) J. Chem. Phys., 136, p. 204119
Aucar, I.A., Gomez, S.S., Giribet, C.G., Aucar, G.A., (2016) Phys. Chem. Chem. Phys., 18, p. 23572
Aucar, I.A., Gomez, S.S., Giribet, C.G., Ruiz de Aza, M.C., (2014) J. Chem. Phys., 141, p. 194103
Aucar, G.A., Melo, J.I., Aucar, I.A., Maldonado, A.F., (2018) Int. J. Quantum Chem., 118 (1)
Jackson, J.D., (1999) Classical Electrodynamics, , 3rd, ed.,, Wiley, New York
Pernpointner, M., Accurate determination of electric field gradients for heavy atoms and molecules (2004) Relativistic Electronic Structure Theory, volume 14 of Theoretical and Computational Chemistry, p. 289. , (Ed, P. Schwerdtfeger, Elsevier, Ámsterdam, p., Ch. 5
Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Provasi, P.F., (2004) J. Chem. Phys., 121, p. 6798
Chen-Tannoudji, C., Dupont-Roc, J., Grynberg, G., (1997) Photons and Atoms, , Wiley, New York
Reiher, M., Wolf, A., (2009) Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science, , Wiley-VCH, Weinheim
Kagakkai, N.B., (1984) Kagaku Benran, II, p. 649. , 3rd, ed., Maruzen Company, LTD, Tokyo, p
Saue, T., Visscher, L., Jensen, H.J.A., Bast, R., Bakken, V., Dyall, K.G., Dubillard, S., Yamamoto, S., (2016), http://www.diracprogram.org, DIRAC, a relativistic ab initio electronic structure program, Release DIRAC16,,) (accessed March 2019); (2015), http://daltonprogram.org, Dalton, a molecular electronic structure program, Release Dalton2016.X,,) (accessed March 2019); Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., gren, H., (2014) WIREs Comput. Mol. Sci., 4, p. 269
Dyall, K.G., (2002) Theor. Chem. Acc., 108, p. 335
Dyall, K.G., (2006) Theor. Chem. Acc., 115, p. 441
Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648
Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., (1994) J. Phys. Chem., 98, p. 11623
Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098
Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785
Ernzerhof, M., Scuseria, G.E., (1999) J. Chem. Phys., 110, p. 5029
Adamo, C., Barone, V., (1999) J. Chem. Phys., 110, p. 6158
Perdew, J.P., (1986) Phys. Rev. B, 33, p. 8822
Reiher, M., Wolf, A., (2004) J. Chem. Phys., 121, p. 2037
Reiher, M., Wolf, A., (2004) J. Chem. Phys., 121, p. 10945
Maldonado, A.F., Aucar, G.A., (2009) Phys. Chem. Chem. Phys., 11, p. 5615
Melo, J.I., Maldonado, A., Aucar, G.A., (2011) Theor. Chem. Acc., 129, p. 483
Maldonado, A.F., Aucar, G.A., (2014) J. Phys. Chem. A, 118, p. 7863
ISSN:00207608
DOI:10.1002/qua.25935