Relativistic corrections to the electric field gradient given by linear response elimination of the small component formalism

This article is concerned with the analysis of relativistic corrections to the electric field gradients (EFGs) via the linear response elimination of the small component scheme (LRESC). Originally developed for magnetic shielding constant, LRESC has been applied in many molecular properties and pres...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Melo, Juan Ignacio
Otros Autores: Maldonado, A.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Inc. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09203caa a22010937a 4500
001 PAPER-25804
003 AR-BaUEN
005 20250724111244.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85063581669 
030 |a IJQCB 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Melo, Juan Ignacio 
245 1 0 |a Relativistic corrections to the electric field gradient given by linear response elimination of the small component formalism 
260 |b John Wiley and Sons Inc.  |c 2019 
270 1 0 |m Melo, J.I.; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univ. de Buenos Aires and IFIBA CONICETArgentina; email: jmelo@df.uba.ar 
504 |a Pound, R.V., (1950) Phys. Rev., 79, p. 685 
504 |a Dehmelt, H.G., Kruger, H., (1950) Naturwiss, 37, p. 111 
504 |a Mössbauer, R.L., (1958) Z. Phys., 151 (2), p. 124 
504 |a Haas, H., Shirley, D.A., (1973) J. Chem. Phys., 58, p. 3339 
504 |a Van Stralen, J.N.P., Visscher, L., (2002) J. Chem. Phys., 117, p. 3103 
504 |a Haiduke, R.L.A., da Silva, A.B.F., Visscher, L., (2006) J. Chem. Phys., 125, p. 064301 
504 |a da Silva, A.B.F., Haiduke, R.L.A., Visscher, L., (2007) Chem. Phys. Lett., 445, p. 95 
504 |a Wolf, A., Reiher, M., (2006) J. Chem. Phys., 124, p. 064102 
504 |a Cheng, L., Gauss, J., (2011) J. Chem. Phys., 134, p. 244112 
504 |a Visscher, L., Enevoldsen, T., Saue, T., Oddershede, J., (1998) J. Chem. Phys., 109, p. 9677 
504 |a Malkin, I., Malkina, O.L., Malkin, V.G., (2002) Chem. Phys. Lett., 361, p. 231 
504 |a Van Stralen, J.N.P., Visscher, L., (2003) Mol. Phys., 101, p. 2115 
504 |a Jacob, C.R., Visscher, L., Thierfelder, C., Schwerdtfeger, P., (2007) J. Chem. Phys., 127, p. 204303 
504 |a Mastalerz, R., Barone, G., Lindh, R., Reiher, M., (2007) J. Chem. Phys., 127, p. 074105 
504 |a Cheng, L., Gauss, J., (2011) J. Chem. Phys., 135, p. 084114 
504 |a Arcisauskaite, V., Knecht, S., Sauer, S.P.A., Hemmingsen, L., (2012) Phys. Chem. Chem. Phys., 14, p. 2651 
504 |a Arcisauskaite, V., Knecht, S., Sauer, S.P.A., Hemmingsen, L., (2012) Phys. Chem. Chem. Phys., 14, p. 16070 
504 |a Filatov, M., Zou, W., Cremer, D., (2012) J. Chem. Phys., 137, p. 054113 
504 |a Filatov, M., Zou, W., Cremer, D., (2013) Curr. Inorg. Chem., 3, p. 284 
504 |a Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Romero, R.H., (2003) J. Chem. Phys., 118, p. 471 
504 |a Ruiz de Azúa, M.C., Melo, J.I., Giribet, C.G., (2003) Mol. Phys., 101, p. 3103 
504 |a Aucar, I.A., Gomez, S.S., Ruiz de Aza, M.C., Giribet, C.G., (2012) J. Chem. Phys., 136, p. 204119 
504 |a Aucar, I.A., Gomez, S.S., Giribet, C.G., Aucar, G.A., (2016) Phys. Chem. Chem. Phys., 18, p. 23572 
504 |a Aucar, I.A., Gomez, S.S., Giribet, C.G., Ruiz de Aza, M.C., (2014) J. Chem. Phys., 141, p. 194103 
504 |a Aucar, G.A., Melo, J.I., Aucar, I.A., Maldonado, A.F., (2018) Int. J. Quantum Chem., 118 (1) 
504 |a Jackson, J.D., (1999) Classical Electrodynamics, , 3rd, ed.,, Wiley, New York 
504 |a Pernpointner, M., Accurate determination of electric field gradients for heavy atoms and molecules (2004) Relativistic Electronic Structure Theory, volume 14 of Theoretical and Computational Chemistry, p. 289. , (Ed, P. Schwerdtfeger, Elsevier, Ámsterdam, p., Ch. 5 
504 |a Melo, J.I., Ruiz de Azúa, M.C., Giribet, C.G., Aucar, G.A., Provasi, P.F., (2004) J. Chem. Phys., 121, p. 6798 
504 |a Chen-Tannoudji, C., Dupont-Roc, J., Grynberg, G., (1997) Photons and Atoms, , Wiley, New York 
504 |a Reiher, M., Wolf, A., (2009) Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science, , Wiley-VCH, Weinheim 
504 |a Kagakkai, N.B., (1984) Kagaku Benran, II, p. 649. , 3rd, ed., Maruzen Company, LTD, Tokyo, p 
504 |a Saue, T., Visscher, L., Jensen, H.J.A., Bast, R., Bakken, V., Dyall, K.G., Dubillard, S., Yamamoto, S., (2016), http://www.diracprogram.org, DIRAC, a relativistic ab initio electronic structure program, Release DIRAC16,,) (accessed March 2019); (2015), http://daltonprogram.org, Dalton, a molecular electronic structure program, Release Dalton2016.X,,) (accessed March 2019); Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., gren, H., (2014) WIREs Comput. Mol. Sci., 4, p. 269 
504 |a Dyall, K.G., (2002) Theor. Chem. Acc., 108, p. 335 
504 |a Dyall, K.G., (2006) Theor. Chem. Acc., 115, p. 441 
504 |a Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648 
504 |a Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., (1994) J. Phys. Chem., 98, p. 11623 
504 |a Becke, A.D., (1988) Phys. Rev. A, 38, p. 3098 
504 |a Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785 
504 |a Ernzerhof, M., Scuseria, G.E., (1999) J. Chem. Phys., 110, p. 5029 
504 |a Adamo, C., Barone, V., (1999) J. Chem. Phys., 110, p. 6158 
504 |a Perdew, J.P., (1986) Phys. Rev. B, 33, p. 8822 
504 |a Reiher, M., Wolf, A., (2004) J. Chem. Phys., 121, p. 2037 
504 |a Reiher, M., Wolf, A., (2004) J. Chem. Phys., 121, p. 10945 
504 |a Maldonado, A.F., Aucar, G.A., (2009) Phys. Chem. Chem. Phys., 11, p. 5615 
504 |a Melo, J.I., Maldonado, A., Aucar, G.A., (2011) Theor. Chem. Acc., 129, p. 483 
504 |a Maldonado, A.F., Aucar, G.A., (2014) J. Phys. Chem. A, 118, p. 7863 
506 |2 openaire  |e Política editorial 
520 3 |a This article is concerned with the analysis of relativistic corrections to the electric field gradients (EFGs) via the linear response elimination of the small component scheme (LRESC). Originally developed for magnetic shielding constant, LRESC has been applied in many molecular properties and presented in this work describing EFG for the first time. Within LRESC we obtain relativistic corrections to EFG in terms of 1/c (the speed of light) formally showing that, up to first order (1/c 2 ), there are no virtual pair contributions; recovering the so-called “no-pair” approximation. Virtual pair contributions and triplet corrections arise at second order (1/c 4 ). To assess the LRESC description of EFGs at Hartree-Fock and DFT levels, we applied it to a simple heavy atom containing set of benchmark molecular systems, HX (X = F, Cl, Br, I, and At), and to linear HgX 2 (X = Cl, Br, and I) molecules. Fully relativistic four-component calculations were also done and taken as reference. The most important relativistic correction given by LRESC is a Mass-velocity related contribution (Δ Mv ) which represents close to 80% of the nonrelativistic result for At in HAt molecule. For Hg in HgX 2 molecular systems, Δ Mv is also the most important correction representing close to 60% of the nonrelativistic part. We also describe the overall behavior of LRESC corrections in HgX 2 molecules showing low varying results when the weight of the halogen, X, increases. In this kind of molecular system, correlation effects appear in combination to relativity, making them a challenging group to be studied. LRESC results are in very good agreement with previous results for halogen halides, but it shows a need of inclusion of higher order contributions, beyond 1/c 2 , when applied to Hg in HgX 2 set, although LRESC describes accurately At atom, heavier than Hg. © 2019 Wiley Periodicals, Inc.  |l eng 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univ. de Buenos Aires and IFIBA CONICET, Buenos Aires, Argentina 
593 |a Instituto de Modelado e Innovación Tecnológica, CONICET-UNNE, Corrientes, Argentina 
690 1 0 |a DFT 
690 1 0 |a EFG 
690 1 0 |a LRESC 
690 1 0 |a NO-PAIR APPROXIMATION 
690 1 0 |a RELATIVISTIC EFFECTS 
690 1 0 |a VIRTUAL PAIRS 
690 1 0 |a ELECTRIC FIELDS 
690 1 0 |a MOLECULES 
690 1 0 |a RELATIVITY 
690 1 0 |a ELECTRIC FIELD GRADIENTS 
690 1 0 |a LRESC 
690 1 0 |a MAGNETIC SHIELDING CONSTANT 
690 1 0 |a PAIR APPROXIMATION 
690 1 0 |a RELATIVISTIC CORRECTION 
690 1 0 |a RELATIVISTIC EFFECTS 
690 1 0 |a RELATIVISTIC FOUR-COMPONENT CALCULATIONS 
690 1 0 |a VIRTUAL PAIRS 
690 1 0 |a MERCURY (METAL) 
700 1 |a Maldonado, A.F. 
773 0 |d John Wiley and Sons Inc., 2019  |p Int J Quantum Chem  |x 00207608  |w (AR-BaUEN)CENRE-16  |t International Journal of Quantum Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063581669&doi=10.1002%2fqua.25935&partnerID=40&md5=ff9c18aaef0258c567f815016bb57a32  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/qua.25935  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00207608_v_n_p_Melo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207608_v_n_p_Melo  |y Registro en la Biblioteca Digital 
961 |a paper_00207608_v_n_p_Melo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86757