Could Electronic Anapolar Interactions Drive Enantioselective Syntheses in Strongly Nonuniform Magnetic Fields? A Computational Study

It is shown that the anapolar interaction of the electrons of a molecule with an external uniform magnetic field B and a uniform curl C = × B′ determines different thermodynamic stabilization of the ground state for the enantiomers and diastereoisomers of a chiral molecule. A series of potential can...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pagola, G.I
Otros Autores: Ferraro, Marta Beatriz, Provasi, P.F, Pelloni, S., Lazzeretti, Paolo
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14844caa a22010817a 4500
001 PAPER-25787
003 AR-BaUEN
005 20250606081904.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85061230655 
030 |a JCTCC 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Pagola, G.I. 
245 1 0 |a Could Electronic Anapolar Interactions Drive Enantioselective Syntheses in Strongly Nonuniform Magnetic Fields? A Computational Study 
260 |b American Chemical Society  |c 2019 
270 1 0 |m Lazzeretti, P.; Departamento de Fĺsica, Facultad de Ciencias Exactas y Naturales, IFIBA, CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. iArgentina; email: lazzeret@gmail.com 
504 |a Faraday, M., XLIX. Experimental Researches in Electricity. Nineteenth Series (1846) London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 28, pp. 294-317 
504 |a Pasteur, L., La Dissymétrie Moleculaire (1884) Rev. Sci., 7, pp. 2-6 
504 |a Faraday, M., (1933) Faraday's Diary of Experimental Investigation, 4. , http://faradaysdiary.com/ws3/faraday.pdf, 1 st ed. George Bell and Sons, Ltd. London, November 12, 1839-June 26, 1847; see also 
504 |a (1904) Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, , Lord Kelvin. C. J. Clay and Sons: London, footnote on page 619 
504 |a Barron, L.D., (2004) Molecular Light Scattering and Optical Activity, , 2 nd ed. Cambridge University Press: Cambridge, U.K 
504 |a Wagnière, G.H., (2007) On Chirality and the Universal Asymmetry: Reflections on Image and Mirror Image, , 1 st ed. Wiley-VCH 
504 |a Curie, P., (1894) Sur la Symétrie dans les Phénomènes Physiques - Symétrie d'Un Champ Èlectrique et d'Un Champ Magnètique, , http://gallica.bnf.fr/ark:/12148/bpt6k2282p/f139.image.pagination.r/journal=de=physique=1894.langEN, J. de Physique, 3e série, t. III, 393 (); reprinted in "Oeuvres de Pierre Curie" Gauthier-Villars, Paris, IX Conclusions, pp 113-141 (1908), Gordon and Breach Science Publishers S. A. (1984) 
504 |a Lazzeretti, P., Chiral Discrimination in Nuclear Magnetic Resonance Spectroscopy (2017) J. Phys.: Condens. Matter, 29, p. 443001 
504 |a Zadel, G., Eisenbraun, C., Wolff, G.-J., Breitmaier, E., Enantioselective Reactions in a Static Magnetic Field (1994) Angew. Chem., Int. Ed. Engl., 33, pp. 454-456 
504 |a Feringa, B.L., Kellogg, R.M., Hulst, R., Zondervan, C., Kruizinga, W.H., Attempts to Carry out Enantioselective Reactions in a Static Magnetic Field (1994) Angew. Chem., Int. Ed. Engl., 33, pp. 1458-1459 
504 |a Kaupp, G., Marquardt, T., Absolute Asymmetric Synthesis Solely under the Influence of a Static Homogeneous Magnetic Field? (1994) Angew. Chem., Int. Ed. Engl., 33, pp. 1459-1461 
504 |a Feringa, B.L., Van Delden, R.A., Absolute Asymmetric Synthesis: The Origin, Control, and Amplification of Chirality (1999) Angew. Chem., Int. Ed., 38, pp. 3418-3438 
504 |a Gölitz, P., Enantioselective Reactions in a Static Magnetic Field-A False Alarm! (1994) Angew. Chem., Int. Ed. Engl., 33, p. 1457 
504 |a Lazzeretti, P., Magnetic Properties of a Molecule in Non-Uniform Magnetic Field (1993) Theor. Chim. Acta, 87, pp. 59-73 
504 |a Faglioni, F., Ligabue, A., Pelloni, S., Soncini, A., Lazzeretti, P., Molecular Response to a Time-independent Non-uniform Magnetic Field (2004) Chem. Phys., 304, pp. 289-299 
504 |a Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P., Magnetizabilities of Diatomic and Linear Triatomic Molecules in a Time-Independent Nonuniform Magnetic Field (2014) J. Phys. Chem. A, 118, pp. 6333-6342 
504 |a Tellgren, E.I., Fliegl, H., Non-perturbative Treatment of Molecules in Linear Magnetic Fields: Calculation of Anapole Susceptibilities (2013) J. Chem. Phys., 139, p. 164118 
504 |a Pagola, G.I., Ferraro, M.B., Provasi, P.F., Pelloni, S., Lazzeretti, P., Theoretical Estimates of the Anapole Magnetizabilities of C 4 H 4 X 2 Cyclic Molecules for X = O, S, Se, and Te (2014) J. Chem. Phys., 141, p. 94305 
504 |a Zarycz, N., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P., Computational Study of Basis Set and Electron Correlation Effects on Anapole Magnetizabilities of Chiral Molecules (2016) J. Comput. Chem., 37, pp. 1552-1558 
504 |a Sen, S., Tellgren, E.I., Non-perturbative Calculation of Orbital and Spin Effects in Molecules Subject to Non-uniform Magnetic Fields (2018) J. Chem. Phys., 148, p. 184112 
504 |a Pelloni, S., Lazzeretti, P., Anapolar Interaction of Aminoacids and Sugars in Nonuniform Magnetic Fields (2018) Rend. Lincei, 29, pp. 199-207 
504 |a Pelloni, S., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Lazzeretti, P., Electric Dipole-Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle (2017) J. Phys. Chem. A, 121, pp. 9369-9376 
504 |a Ceulemans, A., Chibotaru, L.F., Fowler, P.W., Molecular Anapole Moments (1998) Phys. Rev. Lett., 80, pp. 1861-1864 
504 |a Berger, R., Prediction of a Cyclic Helical Oligoacetylene Showing Anapolar Ring Currents in the Magnetic Field (2012) Z. Naturforsch., B: J. Chem. Sci., 67, pp. 1127-1131 
504 |a http://www2.cnrs.fr/en/1654.htm; https://www.nextbigfuture.com/2017/01/record-setting-32-and-36-tesla-magnets.html; https://www.nextbigfuture.com/2017/01/record-setting-32-and-36-tesla-magnets.html; Zablotskii, V., Lunov, O., Kubinova, S., Polyakova, T., Sykova, E., Dejneka, A., Effects of High-gradient Magnetic Fields on Living Cell Machinery (2016) J. Phys. D: Appl. Phys., 49, p. 493003 
504 |a Ge, W., Encinas, A., Araujo, E., Song, S., Magnetic Matrices Used in High Gradient Magnetic Separation (HGMS): A Review (2017) Results Phys., 7, pp. 4278-4286 
504 |a Osman, O., Zanini, L.F., Frénéa-Robin, M., Dumas-Bouchiat, F., Dempsey, N.M., Reyne, G., Buret, F., Haddour, N., Monitoring the Endocytosis of Magnetic Nanoparticles by Cells Using Permanent Micro-flux Sources (2012) Biomed. Microdevices, 14, pp. 947-954 
504 |a Walther, A., Marcoux, C., Desloges, B., Grechishkin, R., Givord, D., Dempsey, N.M., Micro-patterning of NdFeB and SmCo Magnet Films for Integration into Micro-electro-mechanical Systems (2009) J. Magn. Magn. Mater., 321, pp. 590-594 
504 |a Dumas-Bouchiat, F., Zanini, L.F., Kustov, M., Dempsey, N.M., Grechishkin, R., Hasselbach, K., Orlianges, J.C., Givord, D., Thermomagnetically Patterned Micromagnets (2010) Appl. Phys. Lett., 96, p. 102511 
504 |a Kustov, M., Laczkowski, P., Hykel, D., Hasselbach, K., Dumas-Bouchiat, F., O'Brien, D., Kauffmann, P., Dempsey, N.M., Magnetic Characterization of Micropatterned Nd-Fe-B Hard Magnetic Films Using Scanning Hall Probe Microscopy (2010) J. Appl. Phys., 108, p. 63914 
504 |a Dempsey, N.M., Le Roy, D., Marelli-Mathevon, H., Shaw, G., Dias, A., Kramer, R.B.G., Viet Cuong, L., Dumas-Bouchiat, F., Micro-magnetic Imprinting of High Field Gradient Magnetic Flux Sources (2014) Appl. Phys. Lett., 104, p. 262401 
504 |a Pelloni, S., Lazzeretti, P., Monaco, G., Zanasi, R., Magnetic-field Induced Electronic Anapoles in Small Molecules (2011) Rend. Lincei, 22, pp. 105-112 
504 |a Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Malagoli, M., Zanasi, R., Theoretical Study of the Magnetic Properties of Water Molecules in Non-Uniform Magnetic Fields (1994) J. Mol. Struct.: THEOCHEM, 305, pp. 89-99 
504 |a Tellgren, E.I., Teale, A.M., Furness, J.W., Lange, K.K., Ekström, U., Helgaker, T., Non-perturbative Calculation of Molecular Magnetic Properties within Current-density Functional Theory (2014) J. Chem. Phys., 140, p. 34101 
504 |a Tellgren, E.I., Soncini, A., Helgaker, T., Nonperturbative Ab Initio Calculations in Strong Magnetic Fields Using London Orbitals (2008) J. Chem. Phys., 129, p. 154114 
504 |a Tellgren, E.I., Soncini, A., Helgaker, T., Non-perturbative Magnetic Phenomena in Closed-shell Paramagnetic Molecules (2009) Phys. Chem. Chem. Phys., 11, pp. 5489-5498 
504 |a Pagola, G.I., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Calculation of Dipole-Shielding Polarizabilities (σ αβÎI): The Influence of Uniform Electric Field Effects on the Shielding of Backbone Nuclei in Proteins (2004) J. Chem. Phys., 120, pp. 9556-9560 
504 |a Pagola, G.I., Pelloni, S., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Fourth-rank Hypermagnetizability of Medium-size Planar Conjugated Molecules and Fullerene (2005) Phys. Rev. A: At., Mol., Opt. Phys., 72, p. 33401 
504 |a Pagola, G.I., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Nonlinear Response of the Benzene Molecule to Strong Magnetic Fields (2005) J. Chem. Phys., 122, p. 74318 
504 |a Stopkowicz, S., Gauss, J., Lange, K.K., Tellgren, E.I., Helgaker, T., Coupled Cluster Theory for Atoms and Molecules in Strong Magnetic Fields (2015) J. Chem. Phys., 143, p. 74110 
504 |a Adamowicz, L., Tellgren, E.I., Helgaker, T., Non-Born-Oppenheimer Calculations of the HD Molecule in a Strong Magnetic Field (2015) Chem. Phys. Lett., 639, pp. 295-299 
504 |a Condon, E.U., Theories of Optical Rotatory Power (1937) Rev. Mod. Phys., 9, pp. 432-457 
504 |a Pedersen, T.B., Koch, H., Coupled Cluster Response Functions Revisited (1997) J. Chem. Phys., 106, pp. 8059-8072 
504 |a Pedersen, T.B., Fernández, B., Koch, H., Gauge Invariant Coupled Cluster Response Theory Using Optimized Nonorthogonal Orbitals (2001) J. Chem. Phys., 114, pp. 6983-6993 
504 |a Ruud, K., Stephens, P.J., Devlin, F.J., Taylor, P.R., Cheeseman, J.R., Frisch, M.J., Coupled-cluster calculations of optical rotation (2003) Chem. Phys. Lett., 373, pp. 606-614 
504 |a Lazzeretti, P., General Connections among Nuclear Electromagnetic Shieldings and Polarizabilities (2007) Adv. Chem. Phys., 75, pp. 507-549 
504 |a Lazzeretti, P., Wilson, S., Electric and Magnetic Properties of Molecules (2003) Handbook of Molecular Physics and Quantum Chemistry, 3, pp. 53-145. , Ed. John Wiley & Sons, Ltd. Chichester, U.K. Part 1, Chapter 3 
504 |a (2005) DALTON, An Electronic Structure Program, , http://www.kjemi.uio.no/software/dalton/, release 2.0 
504 |a Becke, A.D., Density-functional Thermochemistry. III. the Role of Exact Exchange (1993) J. Chem. Phys., 98, pp. 5648-5652 
504 |a Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Pople, J.A., (2003) Gaussian 2003, , revision B.05; Gaussian, Inc. Pittsburgh, PA 
504 |a Moccia, R., Upper Bounds for the Calculation of Second Order HF Energies (1970) Chem. Phys. Lett., 5, pp. 265-268 
504 |a Hollenstein, H., Luckhaus, D., Pochert, J., Quack, M., Seyfang, G., Synthesis, Structure, High-Resolution Spectroscopy, and Laser Chemistry of Fluorooxirane and 2,2-[2H2]-Fluorooxirane (1997) Angew. Chem., Int. Ed. Engl., 36, pp. 140-143 
504 |a Dunning, T.H., Jr., Gaussian Basis Set for Use in Correlated Molecular Calculations. I. the Atoms Boron through Neon and Hydrogen (1989) J. Chem. Phys., 90, pp. 1007-1023 
504 |a Kendall, R.A., Dunning, T.H., Jr., Harrison, R.J., Electron Affinities of the First-row Atoms Revisited. Systematic Basis Sets and Wave Functions (1992) J. Chem. Phys., 96, pp. 6796-6806 
504 |a Woon, D.E., Dunning, T.H., Jr., Gaussian Basis Set for Use in Correlated Molecular Calculations. III. the Atoms Aluminium through Argon (1993) J. Chem. Phys., 98, pp. 1358-1371 
504 |a Berger, R., Quack, M., Stohner, J., Isotopic Chirality and Molecular Parity Violation (2005) Angew. Chem., Int. Ed. Engl., 44, pp. 3623-3626 
504 |a Kaminsky, W., Experimental and Phenomenological Aspects of Circular Birefringence and Related Properties in Transparent Crystals (2000) Rep. Prog. Phys., 63, p. 1575 
504 |a Mohr, P.J., Newell, D.B., Taylor, B.N., CODATA Recommended Values of the Fundamental Physical Constants: 2014 (2008) Rev. Mod. Phys., 80, pp. 633-730 
506 |2 openaire  |e Política editorial 
520 3 |a It is shown that the anapolar interaction of the electrons of a molecule with an external uniform magnetic field B and a uniform curl C = × B′ determines different thermodynamic stabilization of the ground state for the enantiomers and diastereoisomers of a chiral molecule. A series of potential candidates for enantioselective syntheses have been investigated in a computational study via SCF-HF, B3LYP, and various coupled cluster approaches to determine the difference in energy between different enantiomers and diastereoisomers. The calculations show that these differences are very small for B and C presently available but approximately 3 orders of magnitude larger than those determined by parity violation effects. The chances that enantioselective synthesis may be attempted in the future are discussed. Recognition of anapolar interaction in chiral molecules via measurements of an induced magnetic dipole moment in the ordered phase may become possible in the presence of a nonuniform magnetic field with a strong gradient. © 2019 American Chemical Society.  |l eng 
593 |a Departamento de Fĺsica, Facultad de Ciencias Exactas y Naturales, IFIBA, CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. i, Buenos Aires, 1428, Argentina 
593 |a Department of Physics-IMIT, Northeastern University, CONICET, Corrientes, Argentina 
593 |a Istituto d'Istruzione Superiore Francesco Selmi, via Leonardo da Vinci 300, Modena, 41126, Italy 
593 |a Istituto di Struttura della Materia, Consiglio Nazionale Delle Ricerche, Via del Fosso del Cavaliere 100, Roma, 00133, Italy 
700 1 |a Ferraro, Marta Beatriz 
700 1 |a Provasi, P.F. 
700 1 |a Pelloni, S. 
700 1 |a Lazzeretti, Paolo 
773 0 |d American Chemical Society, 2019  |p J. Chem. Theory Comput.  |x 15499618  |t Journal of Chemical Theory and Computation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061230655&doi=10.1021%2facs.jctc.8b01002&partnerID=40&md5=354ac4fa059bc5a1cd3b7862837a9b25  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acs.jctc.8b01002  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15499618_v_n_p_Pagola  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15499618_v_n_p_Pagola  |y Registro en la Biblioteca Digital 
961 |a paper_15499618_v_n_p_Pagola  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86740