2(3), 9(10), 16(17), 23(24)-tetrakis[(3-mercapto)propoxy] phthalocyaninate zinc (II)/gold nanoparticle conjugates: Synthesis and photophysical properties

Novel stable zinc (II) thiol-phthalocyaninate gold nanoparticle nanoconjugates (PcS-AuNP) with a reproducible and homogeneous distribution size of 16 ± 4 nm were efficiently prepared by means of a ligand exchange reaction. The nanoconjugates were characterized by TEM, DLS, FT-IR and UV–vis. PcS-AuNP...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: García Vior, M.C
Otros Autores: Awruch, J., Dicelio, L.E, Diz, V.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11781caa a22008897a 4500
001 PAPER-25784
003 AR-BaUEN
005 20230518205754.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85054328022 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPPCE 
100 1 |a García Vior, M.C. 
245 1 0 |a 2(3), 9(10), 16(17), 23(24)-tetrakis[(3-mercapto)propoxy] phthalocyaninate zinc (II)/gold nanoparticle conjugates: Synthesis and photophysical properties 
260 |b Elsevier B.V.  |c 2019 
270 1 0 |m Diz, V.E.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Pabellón IIArgentina; email: vdiz@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Daniel, M.C., Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology (2004) Chem. Rev., 104, pp. 293-346 
504 |a Ye, S., Kang, N., Chen, N., Wang, C., Wang, T., Wang, Y., Liu, Y., Ren, L., Tat/HA2 peptides conjugated AuNR@pNIPAAm as a photosensitizer carrier for near infrared triggered photodynamic therapy (2015) Mol. Pharm., 12, pp. 2444-2458 
504 |a Sperling, R.A., Gil, P.R., Zhang, F., Zanella, M., Parak, W.J., Biological applications of gold nanoparticles (2008) Chem. Soc. Rev., 37, pp. 1896-1908 
504 |a De Jong, W.H., Borm, P.J.A., Drug delivery and nanoparticles: applications and hazards (2008) Int. J. Nanomed. Nanosurg., 3, pp. 133-149 
504 |a Cai, W., Gao, T., Hong, H., Sun, J., Applications of gold nanoparticles in cancer nanotechnology (2008) Nanotechnol. Sci. Appl., 1, pp. 17-32 
504 |a Boisselier, E., Astruc, D., Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity (2009) Chem. Soc. Rev., 38, pp. 1759-1782 
504 |a Giljohann, D.A., Seferos, D.S., Daniel, W.L., Massich, M.D., Patel, P.C., Mirkin, C.A., Gold nanoparticles for biology and medicine (2010) Angew. Chem., Int. Ed., 49, pp. 3280-3294 
504 |a Shenhar, R., Rotello, V.M., Nanoparticles: scaffolds and building blocks (2003) Acc. Chem. Res., 36, pp. 549-561 
504 |a Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R., Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system (1994) J. Chem. Soc. Chem. Commun., pp. 801-802 
504 |a Jung, E., Jeong, K., Yeum, H., HyunChoi, J., Effects of polymeric stabilizers on the synthesis of gold nanoparticles (2014) J. Mater. Sci. Technol., 30, pp. 107-111 
504 |a Toma, H., Zamarion, V.M., Toma, S.H., Araki, K., The coordination chemistry at gold nanoparticles (2010) J. Braz. Chem. Soc., 21, pp. 1158-1176 
504 |a Nichick, M.N., Voitekhovich, S.V., Shavel, A., Lesnikovich, A.I., Ivashkevich, O.A., 1-Substituted 5-thiotetrazoles as novel capping agents for stabilization of gold nanoparticles (2009) Polyhedron, 28, pp. 3138-3142. , and references therein 
504 |a Nombona, N., Antunes, E., Litwinski, C., Nyokong, T., Synthesis and photophysical studies of phthalocyanine–gold nanoparticle conjugates (2011) Dalton Trans., 40, pp. 11876-11884 
504 |a Moeno, S., Antunes, E., Nyokon, T., Synthesis and photophysical properties of a novel zinc photosensitizer and its gold nanoparticle conjugate (2011) J. Photochem. Photobiol. A: Chem., 222, pp. 343-350 
504 |a Rossi, L.M., Silva, P.R., Von, L.L.R., Fernandez, A.U., Tada, D.B., Baptista, M.S., Protoporphyrin IX nanoparticle carrier: preparation, optical properties, and singlet oxygen generation (2008) Langmuir, 24, pp. 12534-12538 
504 |a MacDonald, I.J., Dougherty, T.J., Basic Principles of photodynamic therapy (2001) J Porphyrins Phthalocyanines, 5, pp. 105-129 
504 |a Detty, M.R., Gibson, S.L., Wagner, S.J., Current clinical and preclinical photosensitizers for use in photodynamic therapy (2004) J. Med. Chem., 47, pp. 3895-3897 
504 |a Marino, J., García Vior, M.C., Dicelio, L.E., Roguin, L.P., Awruch, J., Photodynamic effects of isosteric water-soluble phthalocyanines on human nasopharynx KB carcinoma cells (2010) Eur. J. Med. Chem., 45, pp. 4129-4139 
504 |a Moeno, S., Krause, R.W.M., Ermilov, E.A., Kuzyniak, W., Höpfner, M., Synthesis and characterization of novel zinc phthalocyanines as potential photosensitizers for photodynamic therapy of cancers (2014) Photochem. Photobiol. Sci., 13, pp. 963-970 
504 |a García Vior, M.C., Cobice, D., Dicelio, L.E., Awruch J. Novel thiol-derivatized zinc(II) phthalocyanines (2009) Tetrahedron Lett., 50, pp. 2467-2469 
504 |a Hone, D.C., Walker, P.I., Evans-Gowing, R., FitzGerald, S., Beeby, A., Chambrier, I., Cook, M.J., Russell, D.A., Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy (2002) Langmuir, 18, pp. 2985-2987 
504 |a Mthethwa, T.P., Arslanoglu, Y., Antunes, E., Nyokong, T., Photophysical behavior of cationic 2-(dimethilamino)ethanethiotetrasubstituted phthalocyanine complexe in the presence of gold nanoparticle (2012) Polyhedron, 38, pp. 169-177 
504 |a Slot, J.W., Geuze, H., A new method of preparing gold probes for multiple-labeling cytochemistry (1985) J. Eur. J. Cell Biol., 38, pp. 87-93 
504 |a Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., Plech, A., *Turkevich Method for Gold Nanoparticle Synthesis Revisited Fachbereich Physik der Universität Konstanz (2006) J. Phys. Chem. B, 110 (32), pp. 15700-15707. , Universitätsstr. 10, D-78457 Konstanz, Germany 
504 |a Strassert, C.A., Bilmes, G.M., Awruch, J., Dicelio, L.E., Comparative photophysical investigation of oxygen and sulfur as covalent linkers on octaalkylamino substituted zinc(II) phthalocyanines (2008) Photochem. Photobiol. Sci., 7, pp. 738-747 
504 |a Lagorio, M.G., Dicelio, L.E., San Román, E., Visible and near IR spectroscopical and photochemical characterization of substituted metallophthalocyanines (1993) J. Photo-Chem. Photobiol. A: Chem., 72, pp. 153-161 
504 |a Rodriguez, M.E., Morán, F., Bonansea, A., Monetti, M., Fernández, D.A., Strassert, C.A., Rivarola, V., Dicelio, L.E., A comparative study of photophysical and phototoxic properties of a new octaalkyl zinc (II) phthalocyanine incorporated in an hydrophilic polymer, in liposomes and in non ionic micelles (2003) Photochem. Photobiol. Sci., 2, pp. 1-8 
504 |a García Vior, M.C., Dicelio, L.E., Awruch, J., Synthesis and properties of phthalocyanine zinc(II) complexes replaced with oxygen and sulfur linked adamantane moieties (2009) Dye. Pigment., 83, pp. 375-380 
504 |a Wilkinson, F., Helman, W.P., Rose, A.D., Rate constant for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation (1995) J. Phys. Chem. Ref. Data, 24, pp. 663-1021 
504 |a Kanehara, M., Tkahashi, H., Teranishi, T., Gold(0) porphyrins on gold nanoparticles (2008) Agnew. Chem., 120, pp. 313-316 
504 |a Xu, T., Li, Y., Zhang, J., Qi, Y., Zhao, X., Zhang, Q., Spherical and polygonal shape of Au nanoparticles coated functionalized polymer microspheres (2015) Appl. Surf. Sci., 345, pp. 264-271 
504 |a Barabadi, H., Honary, S., Ebrahimi, P., Mohammadi, M.A., Alizadeh, A., Naghibi, F., Microbial mediated preparation, characterization and optimization of gold nanoparticles (2014) Braz. J. Microbiol., 45, pp. 1493-1501 
504 |a He, Y.Q., Liu, S.P., Kong, L., Liu, Z.F., A study on the sizes and the concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering (2005) Spectrochimica Acta Part A, 61, pp. 2861-2866 
504 |a Chithrani, B.D., Ghazani, A.A., Chan, W.C., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells (2006) Nano Lett., 6, pp. 662-668 
504 |a Manna, A., Chen, P.L., Akiyama, H., Wei, T.X., Tamada, K., Knoll, W., Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides (2003) Chem. Mater., 15, pp. 20-28. , and references therein 
504 |a Jiang, P., Xie, S.S., Yao, J.N., Pang, S.J., Gao, H.J., The stability of self-organized 1-nonanoethiol-capped gold nanoparticle monolayer (2001) J. Phys. D: Appl. Phys., 34, pp. 2255-2259 
504 |a Anger, P., Bharadwaj, P., Novotny, L., Enhancement and quenching of single-molecule fluorescence (2006) Phys. Rev. Lett., 96. , 113002- 1, 113002- 4 
520 3 |a Novel stable zinc (II) thiol-phthalocyaninate gold nanoparticle nanoconjugates (PcS-AuNP) with a reproducible and homogeneous distribution size of 16 ± 4 nm were efficiently prepared by means of a ligand exchange reaction. The nanoconjugates were characterized by TEM, DLS, FT-IR and UV–vis. PcS-AuNP were a stable system at least for two months in darkness. Singlet molecular oxygen generation was observed when gold plasmon and phthalocyanine were independently excited at 510 nm and 610 nm, respectively. The PcS-AuNP system obtained is a photosensitive material in a wide range of the UV–vis spectrum (300–400 nm, 500–530 nm and 610–799 nm). © 2018 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT-2011-14 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2013-1844 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 104 
536 |a Detalles de la financiación: This work was supported by grants from the University of Buenos Aires ( UBACYT-2011-14 ) and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 104 ), the Agencia Nacional de Promoción Científica y Tecnológica ( PICT 2013-1844 ) Buenos Aires, Argentina. We wish to thank the assistance of Dr. Sara Bari and the technical assistance of Lucia Mercedes Luquez. 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Pabellón II, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina 
593 |a Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 956, Ciudad Autónoma de Buenos Aires, C1113AAD, Argentina 
690 1 0 |a GOLD NANOPARTICLE 
690 1 0 |a OXYGEN QUANTUM YIELD 
690 1 0 |a PHOTODYNAMIC THERAPY 
690 1 0 |a SPECTROSCOPY 
690 1 0 |a ZINC(II) THIOL-PHTHALOCYANINE 
700 1 |a Awruch, J. 
700 1 |a Dicelio, L.E. 
700 1 |a Diz, V.E. 
773 0 |d Elsevier B.V., 2019  |g v. 368  |h pp. 242-247  |p J. Photochem. Photobiol. A Chem.  |x 10106030  |w (AR-BaUEN)CENRE-334  |t Journal of Photochemistry and Photobiology A: Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054328022&doi=10.1016%2fj.jphotochem.2018.09.024&partnerID=40&md5=7403994cb38e5f42bf2a8fa5c56836d5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jphotochem.2018.09.024  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10106030_v368_n_p242_GarciaVior  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10106030_v368_n_p242_GarciaVior  |y Registro en la Biblioteca Digital 
961 |a paper_10106030_v368_n_p242_GarciaVior  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86737