11 Years of Rayleigh Lidar Observations of Gravity Wave Activity Above the Southern Tip of South America

Gravity wave (GW) activity is analyzed using temperature (T) data retrieved from a Rayleigh light detection and ranging (lidar) at Río Gallegos, Argentina (51.6°S, 69.3°W). GW characteristics are derived from 302 nights of observations providing more than 1,018 hr of high-resolution lidar data betwe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Llamedo, P.
Otros Autores: Salvador, Jacobo Omar, de la Torre, A., Quiroga, Jonathan Javier, Alexander, P., Hierro, R., Schmidt, T., Pazmiño, Andrea Fernanda, Quel, Eduardo Jaime
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2019
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 24255caa a22013577a 4500
001 PAPER-25744
003 AR-BaUEN
005 20251006094219.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85060258392 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Llamedo, P. 
245 1 0 |a 11 Years of Rayleigh Lidar Observations of Gravity Wave Activity Above the Southern Tip of South America 
260 |b Blackwell Publishing Ltd  |c 2019 
270 1 0 |m Llamedo, P.; LIDTUA, CIC, Facultad de Ingeniería, Universidad Austral and CONICETArgentina; email: pllamedo@austral.edu.ar 
504 |a Alexander, P., de la Torre, A., Llamedo, P., Interpretation of gravity wave signatures in GPS radio occultations (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2007JD009390 
504 |a Alexander, P., de la Torre, A., Llamedo, P., Hierro, R., Schmidt, T., Haser, A., Wickert, J., A method to improve the determination of wave perturbations close to the tropopause by using a digital filter (2011) Atmospheric Measurement Techniques, 4 (9), pp. 1777-1784. , https://doi.org/10.5194/amt-4-1777-2011 
504 |a Alexander, P., Luna, D., Llamedo, P., de la Torre, A., A gravity waves study close to the Andes mountains in Patagonia and Antarctica with GPS radio occultation observations (2010) Annales de Geophysique, 28 (2), pp. 587-595. , https://doi.org/10.5194/angeo-28-587-2010 
504 |a Alexander, S.P., Klekociuk, A.R., Murphy, D.J., Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E) (2011) Journal of Geophysical Research, 116. , https://doi.org/10.1029/2010JD015164 
504 |a Alexander, S.P., Klekociuk, A.R., Tsuda, T., Gravity wave and orographic wave activity observed around the Antarctic and Arctic stratospheric vortices by the COSMIC GPS-RO satellite constellation (2009) Journal of Geophysical Research, 114. , https://doi.org/10.1029/2009JD011851 
504 |a Alexander, S.P., Sato, K., Watanabe, S., Kawatani, Y., Murphy, D.J., Southern Hemisphere extratropical gravity wave sources and intermittency revealed by a middle-atmosphere general circulation model (2016) Journal of the Atmospheric Sciences, 73 (3), pp. 1335-1349. , https://doi.org/10.1175/JAS-D-15-0149.1 
504 |a Anthes, R.A., Bernhardt, P.A., Chen, Y., Cucurull, L., Dymond, K.F., Ector, D., Healy, S.B., Zen, Z., The COSMIC/FORMOSAT-3 MISSION early results (2008) American Meteorological Society, 89 (3), pp. 313-334. , https://doi.org/10.1175/BAMS-89-3-313 
504 |a Baumgaertner, A.J.G., McDonald, A.J., A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations (2007) Journal of Geophysical Research, 112. , https://doi.org/10.1029/2006JD007504 
504 |a Bègue, N., Vignelles, D., Berthet, G., Portafaix, T., Payen, G., Jégou, F., Benchérif, H., Godin-Beekmann, S., Long-range transport of stratospheric aerosols in the Southern Hemisphere following the 2015 Calbuco eruption (2017) Atmospheric Chemistry and Physics, 17, pp. 15,019-15,036. , https://doi.org/10.5194/acp-17-15019-2017 
504 |a Bencherif, H., Portafaix, T., Baray, J.L., Morel, B., Baldy, S., Leveau, J., Diab, R., LIDAR observations of lower stratospheric aerosols over South Africa linked to large scale transport across the southern subtropical barrier (2003) Journal of Atmospheric and Solar - Terrestrial Physics, 65 (6), pp. 707-715. , https://doi.org/10.1016/S1364-6826(03)00006-3 
504 |a Cao, B., Heale, C.J., Guo, Y., Liu, A.Z., Snively, J.B., Observation and modeling of gravity wave propagation through reflection and critical layers above Andes Lidar Observatory at Cerro Pachón, Chile (2016) Journal of Geophysical Research: Atmospheres, 121, pp. 12,737-12,750. , https://doi.org/10.1002/2016JD025173 
504 |a Carleton, A.M., Atmospheric teleconnections involving the Southern Ocean (2003) Journal of Geophysical Research, 108 (C4). , https://doi.org/10.1029/2000JC000379 
504 |a Chen, W.N., Tsao, C.C., Nee, J.B., Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere (2004) Journal of Atmospheric and Solar - Terrestrial Physics, 66 (1), pp. 39-49. , https://doi.org/10.1016/j.jastp.2003.09.014 
504 |a Choi, H.-J., Chun, H.-Y., Effects of convective gravity wave drag in the Southern Hemisphere winter stratosphere (2013) Journal of the Atmospheric Sciences, 70 (7), pp. 2120-2136. , https://doi.org/10.1175/JAS-D-12-0238.1 
504 |a de la Torre, A., Alexander, P., Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing? (2005) Geophysical Research Letters, 32. , https://doi.org/10.1029/2005GL022959 
504 |a de la Torre, A., Alexander, P., Hierro, R., Llamedo, P., Rolla, A., Schmidt, T., Wickert, J., Large-amplitude gravity waves above the southern Andes, the Drake Passage and the Antarctic Peninsula (2012) Journal of Geophysical Research, 117. , https://doi.org/10.1029/2011JD016377 
504 |a de la Torre, A., Alexander, P., Llamedo, P., Menéndez, C., Schmidt, T., Wickert, J., Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? (2006) Geophysical Research Letters, 33. , https://doi.org/10.1029/2006GL027343 
504 |a de la Torre, A., Alexander, P., Schmidt, T., Llamedo, P., Hierro, R., On the distortions in calculated GW parameters during slanted atmospheric soundings (2018) Atmospheric Measurement Techniques, 11 (3), pp. 1363-1375. , https://doi.org/10.5194/amt-11-1363-2018 
504 |a de la Torre, A., Giraldez, A., Alexander, P., Saturated gravity wave spectra measured with balloons in Mendoza (Argentina) (1994) Geophysical Research Letters, 21, pp. 2039-2042. , https://doi.org/10.1029/94GL01589 
504 |a Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Vitart, F., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system (2011) Quarterly Journal of the Royal Meteorological Society, 137 (656), pp. 553-597. , https://doi.org/10.1002/qj.828 
504 |a Duck, T.J., Whiteway, J.A., Carswell, A.I., Lidar observations of gravity wave activity and Arctic stratospheric vortex core warming (1998) Geophysical Research Letters, 25, pp. 2813-2816. , https://doi.org/10.1029/98GL02113 
504 |a Duck, T.J., Whiteway, J.A., Carswell, A.I., The gravity wave-Arctic stratospheric vortex interaction (2001) Journal of the Atmospheric Sciences, 58 (23), pp. 3581-3596. , https://doi.org/10.1175/1520-0469(2001)058<3581:TGWASV>2.0.CO;2 
504 |a Ehard, B., Kaifler, B., Dörnbrack, A., Preusse, P., Eckermann, S.D., Bramberger, M., Gisinger, S., Rapp, M., Horizontal propagation of large-amplitude mountain waves into the polar night jet (2017) Journal of Geophysical Research: Atmospheres, 122, pp. 1423-1436. , https://doi.org/10.1002/2016JD025621 
504 |a Ehard, B., Kaifler, B., Kaifler, N., Rapp, M., Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements (2015) Atmospheric Measurement Techniques, 8 (11), pp. 4645-4655. , https://doi.org/10.5194/amt-8-4645-2015 
504 |a Ern, M., Preusse, P., Krebsbach, M., Mlynczak, M.G., Russell, J.M., III, Equatorial wave analysis from SABER and ECMWF temperatures (2008) Atmospheric Chemistry and Physics, 8 (4), pp. 845-869. , https://doi.org/10.5194/acp-8-845-2008 
504 |a Fernald, F.G., Analysis of atmospheric lidar observations: Some comments (1984) Applied Optics, 23 (5), p. 652. , https://doi.org/10.1364/AO.23.000652 
504 |a Fritts, D.C., Alexander, M.J., Gravity wave dynamics and effects in the middle atmosphere (2003) Reviews of Geophysics, 41 (1). , https://doi.org/10.1029/2001RG000106 
504 |a Fritts, D.C., Smith, R.B., Taylor, M.J., Doyle, J.D., Eckermann, S.D., Dörnbrack, A., Rapp, M., Ma, J., The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere (2016) Bulletin of the American Meteorological Society, 97 (3), pp. 425-453. , https://doi.org/10.1175/BAMS-D-14-00269.1 
504 |a Geller, M.A., Alexander, M.J., Love, P.T., Bacmeister, J., Ern, M., Hertzog, A., Manzini, E., Zhou, T., A comparison between gravity wave momentum fluxes in observations and climate models (2013) Journal of Climate, 26 (17), pp. 6383-6405. , https://doi.org/10.1175/JCLI-D-12-00545.1 
504 |a Gross, M.R., McGee, T.J., Ferrare, R.A., Singh, U.N., Kimvilakani, P., Temperature measurements made with a combined Rayleigh–Mie and Raman lidar (1997) Applied Optics, 36 (24), pp. 5987-5995. , https://doi.org/10.1364/AO.36.005987 
504 |a Hauchecorne, A., Chanin, M.L., Density and temperature profiles obtained by lidar between 35 and 70 km (1980) Geophysical Research Letters, 7, pp. 565-568. , https://doi.org/10.1029/GL007i008p00565 
504 |a Hauchecorne, A., Godin, S., Marchand, M., Hesse, B., Souprayen, C., Quantification of the transport of chemical constituents from the polar vortex to midlatitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity (2002) Journal of Geophysical Research, 107 (D20). , https://doi.org/10.1029/2001JD000491 
504 |a Hendricks, E.A., Doyle, J.D., Eckermann, S.D., Jiang, Q., Reinecke, P.A., What is the source of the stratospheric gravity wave belt in austral winter? (2014) Journal of the Atmospheric Sciences, 71 (5), pp. 1583-1592. , https://doi.org/10.1175/JAS-D-13-0332.1 
504 |a Hindley, N.P., Wright, C.J., Smith, N.D., Mitchell, N.J., The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO (2015) Atmospheric Chemistry and Physics, 15 (14), pp. 7797-7818. , https://doi.org/10.5194/acp-15-7797-2015 
504 |a Hoffmann, L., Grimsdell, A.W., Alexander, M.J., Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations (2016) Atmospheric Chemistry and Physics, 16 (14), pp. 9381-9397. , https://doi.org/10.5194/acp-16-9381-2016 
504 |a Hoffmann, L., Xue, X., Alexander, M.J., A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations (2013) Journal of Geophysical Research: Atmospheres, 118, pp. 416-434. , https://doi.org/10.1029/2012JD018658 
504 |a Jiang, Q., Doyle, J.D., Reinecke, A., Smith, R.B., Eckermann, S.D., A modeling study of stratospheric waves over the southern Andes and Drake Passage (2013) Journal of the Atmospheric Sciences, 70 (6), pp. 1668-1689. , https://doi.org/10.1175/JAS-D-12-0180.1 
504 |a John, S.R., Kumar, K.K., A discussion on the methods of extracting gravity wave perturbations from space-based measurements (2013) Geophysical Research Letters, 40, pp. 2406-2410. , https://doi.org/10.1002/grl.50451 
504 |a Kaifler, B., Kaifler, N., Ehard, B., Dörnbrack, A., Rapp, M., Fritts, D.C., Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere (2015) Geophysical Research Letters, 42, pp. 9488-9494. , https://doi.org/10.1002/2015GL066465 
504 |a Kaifler, B., Lübken, F.-J., Höffner, J., Morris, R.J., Viehl, T.P., Lidar observations of gravity wave activity in the middle atmosphere over Davis (69°S, 78°E), Antarctica (2015) Journal of Geophysical Research: Atmospheres, 120, pp. 4506-4521. , https://doi.org/10.1002/2014JD022879 
504 |a Kogure, M., Nakamura, T., Ejiri, M.K., Nishiyama, T., Tomikawa, Y., Tsutsumi, M., Suzuki, H., Abo, M., Rayleigh/Raman lidar observations of gravity wave activity from 15 to 70 km altitude over Syowa (69°S, 40°E), the Antarctic (2017) Journal of Geophysical Research: Atmospheres, 122, pp. 7869-7880. , https://doi.org/10.1002/2016JD026360 
504 |a Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfiled, R.P., Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System (1997) Journal of Geophysical Research, 102, pp. 23,429-23,466. , https://doi.org/10.1029/97JD01569 
504 |a Lee, A.M., Roscoe, H.K., Jones, A.E., Haynes, P.H., Shuckburgh, E.F., Morrey, M.W., Pumphrey, H.C., The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring (2001) Journal of Geophysical Research, 106, pp. 3203-3211. , https://doi.org/10.1029/2000JD900398 
504 |a Llamedo, P., Hierro, R., de la Torre, A., Alexander, P., ENSO-related moisture and temperature anomalies over South America derived from GPS radio occultation profiles (2016) International Journal of Climatology, , https://doi.org/10.1002/joc.4702 
504 |a Luna, D., Alexander, P., de la Torre, A., Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements (2013) Advances in Space Research, 52 (5), pp. 879-882. , https://doi.org/10.1016/j.asr.2013.05.015 
504 |a Luntama, J.-P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S., A. von Engeln, E. O'Clerigh, and C. Marquardt, Prospects of the EPS GRAS mission for operational atmospheric applications (2008) Bulletin of the American Meteorological Society, , https://doi.org/10.1175/2008BAMS2399.1 
504 |a McGee, T.J., Gross, M., Ferrare, R., Heaps, W., Singh, U., Raman dial measurements of stratospheric ozone in the presence of volcanic aerosols (1993) Geophysical Research Letters, 20, pp. 955-958. , https://doi.org/10.1029/93GL00751 
504 |a McLandress, C., Shepherd, T.G., Polavarapu, S., Beagley, S.R., Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? (2012) Journal of the Atmospheric Sciences, 69 (3), pp. 802-818. , https://doi.org/10.1175/JAS-D-11-0159.1 
504 |a Nappo, C.J., (2002) An introduction to atmospheric gravity waves, p. 279. , International Geophysics Series, (p., San Diego, CA, Academic Press 
504 |a Nash, E.R., Newman, P.A., Rosenfield, J.E., Schoeberl, M.R., An objective determination of the polar vortex using Ertel's potential vorticity (1996) Journal of Geophysical Research, 101, pp. 9471-9478. , https://doi.org/10.1029/96JD00066 
504 |a Plougonven, R., Hertzog, A., Guez, L., Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations (2013) Quarterly Journal of the Royal Meteorological Society, 139 (670), pp. 101-118. , https://doi.org/10.1002/qj.1965 
504 |a Plougonven, R., Zhang, F., Internal gravity waves from atmospheric jets and fronts (2014) Reviews of Geophysics, 52, pp. 33-76. , https://doi.org/10.1002/2012RG000419 
504 |a Preusse, P., Ern, M., Bechtold, P., Eckermann, S.D., Kalisch, S., Trinh, Q.T., Riese, M., Characteristics of gravity waves resolved by ECMWF (2014) Atmospheric Chemistry and Physics, 14 (19), pp. 10,483-105,08. , https://doi.org/10.5194/acp-14-10483-2014 
504 |a Pulido, M., Rodas, C., Dechat, D., Lucini, M.M., High gravity-wave activity observed in Patagonia, Southern America: Generation by a cyclone passage over the Andes mountain range (2012) Quarterly Journal of the Royal Meteorological Society, , https://doi.org/10.1002/qj.1983 
504 |a Remsberg, E.E., Marshall, B.T., Garcia-Comas, M., Krueger, D., Lingenfelser, G., Martin-Torres, J., Mlynczak, M.G., Thompson, R.E., Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2008JD010013 
504 |a Richter, J.H., Sassi, F., Garcia, R.R., Toward a physically based gravity wave source parameterization in a general circulation model (2010) Journal of the Atmospheric Sciences, 67 (1), pp. 136-156. , https://doi.org/10.1175/2009JAS3112.1 
504 |a Sato, K., Tateno, S., Watanabe, S., Kawatani, Y., Gravity wave characteristics in the Southern Hemisphere revealed by a high resolution middle-atmosphere general circulation model (2012) Journal of the Atmospheric Sciences, 69 (4), pp. 1378-1396. , https://doi.org/10.1175/JAS-D-11-0101.1 
504 |a Schmidt, T., Alexander, P., de la Torre, A., Stratospheric gravity wave momentum flux from radio occultations (2016) Journal of Geophysical Research: Atmospheres, 121, pp. 4443-4467. , https://doi.org/10.1002/2015JD024135 
504 |a Schmidt, T., Wickert, J., Marquardt, C., Beyerle, G., Reigber, C., Galas, R., König, R., GPS radio occultation with CHAMP: An innovative remote sensing method of the atmosphere (2004) Advances in Space Research, 33 (7), pp. 1036-1040. , https://doi.org/10.1016/S0273-1177(03)00591-X 
504 |a Shibata, T., Kobuchi, M., Maeda, M., Measurements of density and temperature profiles in the middle atmosphere with a XeF lidar (1986) Applied Optics, 25 (5), pp. 685-688. , https://doi.org/10.1364/AO.25.000685 
504 |a Wolfram, E.A., Salvador, J., D'Elia, R., Casiccia, C., Paes Leme, N., Pazmiño, A., Porteneuve, J., Quel, E., New differential absorption lidar for stratospheric ozone monitoring in Patagonia, South Argentina (2008) J. Opt. A: Pure Appl. Opt., 10 (10). , https://doi.org/10.1088/1464-4258/10/10/104021 
504 |a Wolfram, E.A., Salvador, J., Orte, F., D'Elia, R., Godin-Beekmann, S., Kuttippurath, J., Pazmiño, A., Quel, E., The unusual persistence of an ozone hole over a southern mid-latitude station during the Antarctic spring 2009: A multi-instrument study (2012) Annales de Geophysique, 30 (10), pp. 1435-1449. , https://doi.org/10.5194/angeo-301435-2012 
504 |a Wright, C.J., Hindley, N.P., Hoffmann, L., Alexander, M.J., Mitchell, N.J., Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the southern Andes and Drake Passage (2017) Atmospheric Chemistry and Physics, 17 (13), pp. 8553-8575. , https://doi.org/10.5194/acp-17-8553-2017 
504 |a Wright, C.J., Hindley, N.P., Moss, A.C., Mitchell, N.J., Multiinstrument gravity-wave measurements over Tierra del Fuego and the Drake Passage—Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes (2016) Atmospheric Measurement Techniques, 9 (3), pp. 877-908. , https://doi.org/10.5194/amt-9-877-2016 
504 |a Zhang, F., Generation of mesoscale gravity waves in upper-tropospheric jet-front systems (2004) Journal of the Atmospheric Sciences, 61 (4), pp. 440-457 
504 |a Zhang, F., Koch, S., Davis, C., Kaplan, M., A survey of unbalanced flow diagnostics and their application (2000) JAdvances in Atmospheric Sciences, 17 (2), pp. 165-183 
506 |2 openaire  |e Política editorial 
520 3 |a Gravity wave (GW) activity is analyzed using temperature (T) data retrieved from a Rayleigh light detection and ranging (lidar) at Río Gallegos, Argentina (51.6°S, 69.3°W). GW characteristics are derived from 302 nights of observations providing more than 1,018 hr of high-resolution lidar data between 20- and 56-km height from August 2005 to December 2015. T measurements are performed by a Differential Absorption Lidar instrument. This lidar was the southernmost outside Antarctica until the end of 2017. Río Gallegos is an exceptional place to observe large amplitude GW. Every lidar measurement is classified according to its relative position to the polar vortex. The lidar measurements are compared with collocated Sounding of the Atmosphere using Broadband Emission Radiometry and Global Positioning System-Radio Occultation data. The different instruments show different windows of the GW spectrum, providing complementary observations. In general, the geometric mean of the specific GW potential energy (PE) is larger during winter and spring than during summer and autumn. The largest geometric mean of PE is found inside the vortex and decreases monotonically at its edge, outside it and when there is no vortex. The same behavior is observed with satellite data. On average, it can be seen that lidar observations provide larger PE values than limb sounding measurements. From a Morlet continuous wavelet transform analysis, three distinct modes are captured from Sounding of the Atmosphere using Broadband Emission Radiometry and from Global Positioning System-Radio Occultation data at the upper and lower stratosphere, respectively. In particular, a systematic 3.5- to 4-year oscillation, possibly related to El Niño–Southern Oscillation is observed. ©2018. American Geophysical Union. All Rights Reserved.  |l eng 
536 |a Detalles de la financiación: Japan Science and Technology Agency 
536 |a Detalles de la financiación: Science and Technology Research Partnership for Sustainable Development 
536 |a Detalles de la financiación: Japan International Cooperation Agency 
536 |a Detalles de la financiación: Manuscript prepared under grants CONICET PIP11220120100034 and ANPCYT PICT2013-1097. P. Llamedo, J. Salvador, A. de la Torre, J. Quiroga, P. Alexander, and R. Hierro are members of CONICET. This research was supported by the Science and Technology Research Partnership for Sustainable Development (SATREPS), Japan Science and Technology Agency (JST), and Japan International Cooperation Agency (JICA). The DIAL construction and maintenance since 2005 were supported by projects from ANPCYT, CONICET, and CNRS. MIMOSA model data were downloaded from aeris-data.fr/mimosa. According to AGU data policy, an archive weblink to the lidar data may found at https:// figshare.com/s/ca19a838a78ca5afe1d4. GPS RO and TIMED/SABER data were downloaded, respectively, from http:// cdaac-www.cosmic.ucar.edu/cdaac- products.html and http://saber.gats- inc.com/browse_data.php. 
593 |a LIDTUA, CIC, Facultad de Ingeniería, Universidad Austral and CONICET, Buenos Aires, Argentina 
593 |a Laser and Application Research Center (CEILAP)–UNIDEF (MINDEF-CONICET)Villa Martelli, Argentina 
593 |a Facultad Regional Buenos Aires (UTN-FRBA), Universidad Tecnológica Nacional, Buenos Aires, Argentina 
593 |a Universidad Nacional de la Patagonia Austral, Unidad Académica Río Gallegos, and CIT, Río Gallegos, Argentina 
593 |a Instituto de Física de Buenos Aires, CONICET, Buenos Aires, Argentina 
593 |a Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany 
593 |a LATMOS, UVSQ University Paris Saclay, UPMC University Paris 06, CNRS, Guyancourt, France 
651 4 |a SOUTHEN SOUTH AMERICA 
690 1 0 |a GPS RO; SABER 
690 1 0 |a GRAVITY WAVES ACTIVITY 
690 1 0 |a LIDAR 
690 1 0 |a POLAR VORTEX 
690 1 0 |a STRATOSPHERE 
700 1 |a Salvador, Jacobo Omar 
700 1 |a de la Torre, A. 
700 1 |a Quiroga, Jonathan Javier 
700 1 |a Alexander, P. 
700 1 |a Hierro, R. 
700 1 |a Schmidt, T. 
700 1 |a Pazmiño, Andrea Fernanda 
700 1 |a Quel, Eduardo Jaime 
773 0 |d Blackwell Publishing Ltd, 2019  |g v. 124  |h pp. 451-467  |k n. 2  |p J. Geophys. Res. Atmos.  |x 2169897X  |w (AR-BaUEN)CENRE-419  |t Journal of Geophysical Research: Atmospheres 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060258392&doi=10.1029%2f2018JD028673&partnerID=40&md5=842407c5d213a56f1c9e7e8959ab6264  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1029/2018JD028673  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_2169897X_v124_n2_p451_Llamedo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2169897X_v124_n2_p451_Llamedo  |y Registro en la Biblioteca Digital 
961 |a paper_2169897X_v124_n2_p451_Llamedo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86697