Wavefront imaging by using an inline holographic microscopy system based on a double-sideband filter

In this letter, we propose an inline holographic microscopy (ILHM) system, based on the double-sideband technique (DST), for wavefront imaging. The presented optical system shows all the benefits of the previously reported DST (instantaneous removing of ghost images in an inline scheme) but adapted...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zhang, H.
Otros Autores: Monroy-Ramírez, F.A, Lizana, A., Iemmi, Claudio César, Bennis, N., Morawiak, P., Piecek, W., Campos, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10156caa a22010697a 4500
001 PAPER-25716
003 AR-BaUEN
005 20250513094840.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85054805688 
030 |a OLEND 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Zhang, H. 
245 1 0 |a Wavefront imaging by using an inline holographic microscopy system based on a double-sideband filter 
260 |b Elsevier Ltd  |c 2019 
270 1 0 |m Zhang, H.; Departamento de Física, Universitat Autònoma de BarcelonaSpain; email: haolin.zhang@uab.cat 
504 |a Lin, Y., Dong, L., Chen, H., Huang, S., Phase distribution analysis of tissues based on the off-axis digital holographic hybrid reconstruction algorithm (2018) Biomed Opt Express, 9 (1), pp. 1-13 
504 |a Plascencia-Villa, G., Ponce, A., Collingwood, J.F., Arellano-Jimenéz, M.J., Zhu, X., Rogers, J.T., Betancourt, I., Perry, G., High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer´s disease (2016) Sci Rep, 6, p. 24873 
504 |a Byeon, H., Lee, J., Doh, J., Lee, S.J., Hybrid bright-field and hologram imaging of cell dynamics (2016) Sci Rep, 6, p. 33750 
504 |a Byeon, H., Go, T., Lee, S.J., Digital stereo-holographic microscopy for studying three-dimensional particle dynamics (2018) Opt Lasers Eng, 105, pp. 6-13 
504 |a Schnell, M., Carney, P.S., Hillenbrand, R., Synthetic optical holography for rapid nanoimaging (2014) Nat Commun, 5, p. 3499 
504 |a Verrier, N., Fournier, C., Digital holography super-resolution for accurate three-dimensional reconstruction of particle holograms (2015) Opt Lett, 40 (2), pp. 217-220 
504 |a Xia, P., Wang, Q., Ri, S., Tsuda, H., Calibrated phase-shifting digital holography based on a dual-camera system (2017) Opt Lett, 42 (23), pp. 4954-4957 
504 |a Kakue, T., Endo, Y., Nishitsuji, T., Shimobaba, T., Masuda, N., Ito, T., Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomenon (2017) Sci Rep, 7, p. 10413 
504 |a Di, J., Zhao, J., Jiang, H., Zhang, P., Fan, Q., Sun, W., High resolution digital holographic microscopy with a wide field of view on a synthetic aperture technique and use of linear CCD scanning (2008) Appl Opt, 47 (30), pp. 5654-5659 
504 |a Garcia-Sucerquia, J., Xu, W., Jericho, M.H., Kruezer, H.J., Immersion digital in-line holographic microscopy (2006) Opt Lett, 31 (9), pp. 1211-1213 
504 |a Singh, D.K., Ahrens, C.C., Li, W., Vanapalli, S.A., Label-free fingerprinting of tumor cells in bulk flow using inline digital holographic microscopy (2017) Biomed Opt Express, 8 (2), pp. 536-554 
504 |a Kim, K., Park, Y., Fourier transform light scattering angular spectroscopy using digital inline holography (2012) Opt Lett, 37 (19), pp. 4161-4163 
504 |a Micó, V., García, J., Zalevsky, Z., Javidi, B., Phase-shifting Gabor holography (2009) Opt Lett, 34 (10), pp. 1492-1494 
504 |a Micó, V., Zalevsky, Z., Garcia, J., Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator (2012) Opt Lett, 37 (23), pp. 4988-4990 
504 |a Rostykus, M., Moser, C., Compact lensless off-axis transmission digital holographic microscope (2017) Opt Express, 25 (14), pp. 16652-16659 
504 |a Wallace, J.K., Rider, S., Serabyn, E., Kühn, J., Liewer, K., Deming, J., Showalter, G., Nadeau, J., Robust, compact implementation of an off-axis digital holographic microscope (2015) Opt Express, 23 (13), pp. 17367-17378 
504 |a Gabor, D., A new microscopic principle (1948) Nature, 4098, pp. 777-778 
504 |a Sánchez-Ortiga, E., Doblas, A., Saavedra, G., Martínez-Corral, M., Garcia-Sucerquia, J., Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit (2014) Appl Opt, 53 (10), pp. 2058-2066 
504 |a Marim, M., Angelini, E., Olivo-Marin, J.C., Atlan, M., Off-axis compressed holographic microscopy in low-light conditions (2011) Opt Lett, 36 (1), pp. 79-81 
504 |a Witte, S., Plauşka, A., Ridder, M.C., van Berge, L., Mansvelder, H.D., Groot, M.L., Short-coherence off-axis holographic phase microscopy of live cell dynamics (2012) Biomed Opt Express, 3 (9), pp. 2184-2189 
504 |a Dubois, F., Yourassowsky, C., Full off-axis red-green-blue digital holographic microscope with LED illumination (2012) Opt Lett, 37 (12), pp. 2190-2192 
504 |a Meng, H., Hussain, F., In-line recording and off-axis viewing technique for holographic particle velocimetry (1995) Appl Opt, 34 (11), pp. 1827-1840 
504 |a Xu, L., Peng, X., Miao, J., Asundi, A.K., Studies of digital microscopic holography with applications to microstructure testing (2001) Appl Opt, 40 (28), pp. 5046-5051 
504 |a Micó, V., Zalevsky, Z., García, J., Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution (2008) Opt Commun, 281 (17), pp. 4273-4281 
504 |a Micó, V., García-Monreal, J., Zalevsky, Z., Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics (2009) J Nanophotonics, 3 (1) 
504 |a Ma, L., Wang, H., Li, Y., Jin, H., Partition calculation for zero-order and conjugate image removal in digital in-line holography (2012) Opt Express, 20 (2), pp. 1805-1815 
504 |a Mishina, T., Okano, F., Yuyama, I., Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones (1999) Appl Opt, 38 (17), pp. 3703-3713 
504 |a Palero, V., Lobera, J., Andrés, N., Arroyo, M.P., Shifted knife-edge aperture digital in-line holography for fluid velocimetry (2014) Opt Lett, 39 (11), pp. 3356-3359 
504 |a Takaki, Y., Tanemoto, Y., Band-limited zone plates for single-sideband holography (2009) Appl Opt, 48 (34), pp. H64-H70 
504 |a Ramirez, C., Lizana, A., Iemmi, C., Campos, J., Inline digital holographic movie based on a double-sideband filter (2015) Opt Lett, 40 (17), pp. 4142-4145 
504 |a Ramirez, C., Lizana, A., Iemmi, C., Campos, J., Method based on the double sideband technique for the dynamic tracking of micrometric particles (2016) J. Optics, 18 
504 |a Pedrini, G., Osten, W., Zhang, Y., Wave-front reconstruction from a sequence of interferograms recorded at different planes (2005) Opt Lett, 30 (8), pp. 833-835 
504 |a Grilli, S., Ferraro, P., De Nicola, S., Finizio, A., Pierattini, G., Meucci, R., Whole optical wavefields reconstruction by digital holography (2001) Opt Express, 9 (6), pp. 294-302 
504 |a Volkov, V.V., Zhu, Y., Deterministic phase unwrapping in the presence of noise (2003) Opt Lett, 28 (22), pp. 2156-2258 
506 |2 openaire  |e Política editorial 
520 3 |a In this letter, we propose an inline holographic microscopy (ILHM) system, based on the double-sideband technique (DST), for wavefront imaging. The presented optical system shows all the benefits of the previously reported DST (instantaneous removing of ghost images in an inline scheme) but adapted to a microscopic system. The double-sideband filter is implemented by using a transparent liquid crystal (LC) bi-pixel device. Specifically, by addressing the proper phase values to each half of the LC bi-panel, which is located at the Fourier plane of the holographic system, the conjugate image is removed. What is more, by using a high numerical aperture microscope objective, we achieved the microscopic wavefront holography imaging. Finally, the feasibility of the proposed system is testified by obtaining holographic wavefront images of different objects. © 2018 Elsevier Ltd  |l eng 
593 |a Departamento de Física, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain 
593 |a Departamento de Física, Universidad Nacional de Colombia, Sede Bogotá Carrera 45 No 26–85, Bogotá D.C., Colombia 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
593 |a Military University of Technology, New Technologies and Chemistry Faculty, Gen. W. Urbanowicza 2, 00-908, Warszawa, Poland 
690 1 0 |a FOURIER OPTICS 
690 1 0 |a HOLOGRAPHY 
690 1 0 |a LIQUID CRYSTALS 
690 1 0 |a MICROSCOPY 
690 1 0 |a WAVEFRONT SENSING 
690 1 0 |a ADAPTIVE OPTICS 
690 1 0 |a FOURIER OPTICS 
690 1 0 |a LIQUID CRYSTALS 
690 1 0 |a MICROSCOPIC EXAMINATION 
690 1 0 |a OPTICAL SYSTEMS 
690 1 0 |a PASSIVE FILTERS 
690 1 0 |a WAVEFRONTS 
690 1 0 |a CONJUGATE IMAGE 
690 1 0 |a HIGH NUMERICAL APERTURES 
690 1 0 |a HOLOGRAPHIC MICROSCOPY 
690 1 0 |a HOLOGRAPHIC SYSTEM 
690 1 0 |a MICROSCOPE OBJECTIVE 
690 1 0 |a MICROSCOPIC SYSTEM 
690 1 0 |a TRANSPARENT LIQUIDS 
690 1 0 |a WAVE-FRONT SENSING 
690 1 0 |a HOLOGRAPHY 
700 1 |a Monroy-Ramírez, F.A. 
700 1 |a Lizana, A. 
700 1 |a Iemmi, Claudio César 
700 1 |a Bennis, N. 
700 1 |a Morawiak, P. 
700 1 |a Piecek, W. 
700 1 |a Campos, J. 
773 0 |d Elsevier Ltd, 2019  |g v. 113  |h pp. 71-76  |p Opt Lasers Eng  |x 01438166  |w (AR-BaUEN)CENRE-6369  |t Optics and Lasers in Engineering 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054805688&doi=10.1016%2fj.optlaseng.2018.10.003&partnerID=40&md5=5f12d359f984ac7210f38044304d32af  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.optlaseng.2018.10.003  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01438166_v113_n_p71_Zhang  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01438166_v113_n_p71_Zhang  |y Registro en la Biblioteca Digital 
961 |a paper_01438166_v113_n_p71_Zhang  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86669