Modelling growth/no growth interface of Zygosaccharomyces bailii in simulated acid sauces as a function of natamycin, xanthan gum and sodium chloride concentrations

Probabilistic microbial modelling using logistic regression was used to predict the growth/no growth (G/NG) interfaces of Zygosaccharomyces bailii in simulated acid sauces as a function of natamycin, xanthan gum (XG) and sodium chloride concentrations. The growth was assessed colorimetrically by usi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zalazar, A.L
Otros Autores: Gliemmo, M.F, Soria, M., Campos, C.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13646caa a22010577a 4500
001 PAPER-25710
003 AR-BaUEN
005 20230518205749.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85053690486 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a FORIE 
100 1 |a Zalazar, A.L. 
245 1 0 |a Modelling growth/no growth interface of Zygosaccharomyces bailii in simulated acid sauces as a function of natamycin, xanthan gum and sodium chloride concentrations 
260 |b Elsevier Ltd  |c 2019 
270 1 0 |m Campos, C.A.; Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Argentina; email: carmen@di.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Arroyo-López, F.N., Bautista-Gallego, J., Romero-Gil, V., Rodríguez-Gómez, F., Garrido-Fernández, A., Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride (2012) Int. J. Food Microbiol., 155 (3), pp. 257-262 
504 |a Boons, K., Van Derlinden, E., Mertens, L., Peeters, V., Van Impe, J.F., Effect of immobilization and salt concentration on the growth dynamics of Escherichia coli K12 and Salmonella Typhimurium (2013) J. Food Sci., 78 (4), pp. 567-574 
504 |a Brocklehurst, T.F., Mitchell, G.A., Smith, A.C., A model experimental gel surface for the growth of bacteria on foods (1997) Food Microbiol., 14 (4), pp. 303-311 
504 |a Campos, C.A., Gliemmo, M.F., Zalazar, A.L., Castro, M.P., Schelegueda, L.I., Effect of food structure on microbial growth and on the activity of stress factors (2015) Food microbiology: Fundamentals, challenges and health implications, pp. 7-13. , E. Perkins Nova Science Publishers, Inc. Nueva York 
504 |a R Development Core Team, A Language and Environment for Statistical Computing. Vienna, Austria : the R Foundation for Statistical Computing (2017), http://www.R-project.org/, Available online at; Couto, M.B., Hartog, B.J., In't veld, J.H., Hofstra, H., Van der Vossen, J.M.B.M., Identification of spoilage yeasts in a food-production chain by microsatellite polymerase chain reaction fingerprinting (1996) Food Microbiol., 13 (1), pp. 59-67 
504 |a Dang, T.D.T., Mertens, L., Vermeulen, A., Geeraerd, A.H., Van Impe, J.F., Debevere, J., Modeling the growth/no growth boundary of Zygosaccharomyces bailii in acidic conditions: A contribution to the alternative method to preserve foods without using chemical preservatives (2010) Int. J. Food Microbiol., 137 (1), pp. 1-12 
504 |a El-Diasty, E.M., El-Kaseh, R.M., Salem, R.M., The effect of natamycin on keeping quality and organoleptic characters of yoghurt (2008) Arab Journal of Biotechnology, 12 (1), pp. 41-48 
504 |a Fuqua, W.C., Winans, S.C., Greenberg, E.P., Quorum sensing in bacteria: The LuxR/Luxl family of cell density responsive transcriptional regulators (1994) J. Bacteriol., 176 (2), pp. 269-275 
504 |a Gallo, L., Jagus, R., Modelling Saccharomyces cerevisiae inactivation by natamycin in liquid cheese whey (2006) Brazilian Journal of Food Technology, 9 (4), pp. 311-316 
504 |a Jenkins, P., Poulus, P.G., Cole, M.B., Vandeven, M.H., Legan, J.H., Theboundary for growth of Zygosaccharomyces bailii in acidified productsdescribed by models for time to growth and probability of growth (2000) J. Food Prot., 63 (2), pp. 222-230 
504 |a Koutsoumanis, K.P., Kendall, P.A., Sofos, J.N., A comparative study on growth limits of Listeria monocytogenes as affected by temperature, pH and aw when grown in suspension or on a solid surface (2004) Food Microbiol., 21 (4), pp. 415-422 
504 |a López-Malo, A., Palou, E., Modeling the growth/no growth interface of Zygosaccharomyces bailii in Mango Puree (2000) J. Food Sci., 65 (3), pp. 516-520 
504 |a McKellar, R.C., Lu, X., A probability of growth model for E. coli O157:H7 as a function of temperature, pH, acetic acid, and salt (2001) J. Food Prot., 64 (12), pp. 1922-1928 
504 |a Meldrum, R.J., Brocklehurst, T.F., Wilson, D.R., Wilson, P.D.G., The effects of cell immobilization, pH and sucrose on the growth of Listeria monocytogenes Scott a at 10 °C (2003) Food Microbiol., 20 (1), pp. 97-103 
504 |a Mertens, L., Geeraerd, A.H., Dang, T.D.T., Vermeulen, A., Serneels, K., Van Derlinden, E., Van Impe, J.F., Design of an experimental viscoelastic food model system for studying Zygosaccharomyces bailii spoilage in acidic sauces (2009) Appl. Environ. Microbiol., 75 (22), pp. 7060-7069 
504 |a Mertens, L., Van Derlinden, E., Dang, T.D.T., Cappuyns, A.M., Vermeulen, A., Debevere, J., Van Impe, J.F., On the critical evaluation of growth/no growth assessment of Zygosaccharomyces bailii with optical density measurements: Liquid versus structured media (2011) Food Microbiol., 28 (4), pp. 736-745 
504 |a Montañés, F.M., Pascual-Ahuir, A., Proft, M., Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors (2011) Mol. Microbiol., 79 (4), pp. 1008-1023 
504 |a Monu, E.A., Techathuvanan, C., Wallis, A., Critzer, F.J., Davidson, P.M., Plant essential oils and components on growth of spoilage yeasts in microbiological media and a model salad dressing (2016) Food Control, 65, pp. 73-77 
504 |a Pedersen, J.C., Natamycin as a Fungicide in Agar Media (1992) Appl. Environ. Microbiol., 58 (3), pp. 1064-1066 
504 |a Presser, K.A., Ross, T., Ratkowsky, D.A., Modelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid and water activity (1998) Appl. Environ. Microbiol., 64 (5), pp. 1773-1779 
504 |a Ratkowsky, D.A., Ross, T., Modelling the bacterial growth/no growth interface (1995) Lett. Appl. Microbiol., 20 (1), pp. 29-33 
504 |a Salter, M.A., Ratkowsky, D.A., Ross, T., McMeekin, T.A., Modelling the combined temperature and salt (NaCl) limits for growth of a pathogenic Escherichia coli strain using nonlinear logistic regression (2000) Int. J. Food Microbiol., 61 (2), pp. 159-167 
504 |a Skandamis, P., Tsigarida, E., Nychas, G.J.E., Ecophysiological attributes of Salmonella Typhimurium in liquid culture and within a gelatin with or without the addition of oregano essential oil (2000) World J. Microbiol. Biotechnol., 16 (1), pp. 31-35 
504 |a Skandamis, P.N., Jeanson, S., Colonial vs. planktonic type of growth: Mathematical modeling of microbial dynamics on surfaces and in liquid, semi-liquid and solid foods (2015) Front. Microbiol., 6, p. 1178 
504 |a Smittle, R.B., Microbiological safety of mayonnaise, salad dressings, and sauces produced in the United States: A review (2000) J. Food Prot., 63 (8), pp. 1144-1158 
504 |a Stechini, M.L., Del Torre, M., Sarais, I., Saro, O., Messina, M., Maltini, E., Influence of structural properties and kinetic constraints on Bacillus cereus growth (1998) Appl. Environ. Microbiol., 64 (3), pp. 1075-1078 
504 |a Thomas, L.V., Delves-Broughton, J., Natamycin (2003) Encyclopedia of food sciences and nutrition, pp. 4110-4115. , G. Caballero Academic Press, Elsevier Science and Technology Amsterdam 
504 |a Tienungoon, S., Ratkowsky, D.A., McMeekin, T.A., Ross, T., Growth limits of Listeria monocytogenes as a function of temperature, pH, NaCl and lactic acid (2000) Appl. Environ. Microbiol., 66 (11), pp. 4979-4987 
504 |a Vermeulen, A., Devlieghere, F., Bernaerts, K., Van Impe, J., Debevere, J., Growth/no growth models describing the influence of pH, lactic and acetic acid on lactic acid bacteria developed to determine the stability of acidified sauces (2007) Int. J. Food Microbiol., 119 (3), pp. 258-269 
504 |a Vermeulen, A., Gysemans, K.P.M., Bernaerts, K., Geeraerd, A.H., Van Impe, J.F., Debevere, J., Devlieghere, F., Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7°C: Data collection for the development of a growth/no growth model (2007) Int. J. Food Microbiol., 114 (3), pp. 332-341 
504 |a Walker, S.L., Brocklehurst, T.F., Wimpenny, J.W.T., Adenylates and adenylate-energy charge in submerged and planktonic cultures of Salmonella enteritidis and Salmonella typhimurium (1998) Int. J. Food Microbiol., 44 (1), pp. 107-113 
504 |a Wilson, P.D.G., Brocklehurst, T.F., Arino, S., Thualt, D., Jakobsen, M., Lange, M., Van Impe, J.F., Modelling microbial growth in structured foods: Towards a unified approach (2002) Int. J. Food Microbiol., 73, pp. 275-289 
504 |a Yoon, K.S., Burnette, C.N., Whiting, R.C., Effects of pH and agitation on the growth of Listeria monocytogenes Scott a in brain heart infusion broth containing combined potassium lactate and sodium diacetate during storage at 4 or 10 °C (2003) J. Food Prot., 66 (8), pp. 1469-1473 
504 |a Zalazar, A.L., Gliemmo, M.F., Campos, C.A., Effect of stabilizers, oil level and structure on the growth of Zygosaccharomyces bailii and on physical stability of model systems simulating acid sauces (2016) Food Res. Int., 85, pp. 200-208 
504 |a Zalazar, A.L., Gliemmo, M.F., Soria, M., Campos, C.A., Data supporting the growth/no growth interface of Zygosaccharomyces bailii in simulated acid sauces (2018) Food Research International Data in Brief, 3, pp. 233-240. , submitted 
504 |a Zalazar, A.L., González, M.M., Gliemmo, M.F., Campos, C.A., A colorimetric assay using tetrazolium salts with an electron mediator to evaluate yeast growth in opaque dispersed systems (2018) SDRP Journal of Food Science & Technology, 3, pp. 233-240 
520 3 |a Probabilistic microbial modelling using logistic regression was used to predict the growth/no growth (G/NG) interfaces of Zygosaccharomyces bailii in simulated acid sauces as a function of natamycin, xanthan gum (XG) and sodium chloride concentrations. The growth was assessed colorimetrically by using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride and 2-methoxy-1,4-naphthoquinone as detection reagents. The logistic regression model successfully predicted G/NG probability. The detection reagents used allowed the evaluation of G/NG interfaces in opaque systems with an excellent agreement with the plate count method. Natamycin concentration of 12 mg/L was needed to inhibit Z. bailii growth independently of the presence of XG and/or NaCl. Addition of 3.00 and 6.00% of NaCl exerted an antagonistic effect on natamycin action. Furthermore, addition of 0.25 and 0.50% XG decreased natamycin and/or NaCl action. However, an increased in XG concentration to 1.00% decreased yeast growth. Mentioned results highlighted the importance of the correct selection of stress factors applied to inhibit Z. bailii growth. © 2018 Elsevier Ltd  |l eng 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: We acknowledge the financial support from the Universidad de Buenos Aires , Agencia Nacional de Promoción Científica y Tecnológica and Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. 
593 |a Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina 
593 |a Research fellow from Consejo Nacional de Investigaciones, Científicas y Técnicas de la, Argentina 
593 |a Cátedra de Microbiología, Facultad de Agronomia, Universidad de Buenos Aires, INBA-CONICET, Buenos Aires, Argentina 
593 |a Member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina 
690 1 0 |a GROWTH/NO GROWTH INTERFACE 
690 1 0 |a MODEL ACID SAUCES 
690 1 0 |a NATAMYCIN 
690 1 0 |a SODIUM CHLORIDE 
690 1 0 |a XANTHAN GUM 
690 1 0 |a ZYGOSACCHAROMYCES BAILII 
690 1 0 |a REGRESSION ANALYSIS 
690 1 0 |a SODIUM CHLORIDE 
690 1 0 |a ANTAGONISTIC EFFECTS 
690 1 0 |a CHLORIDE CONCENTRATIONS 
690 1 0 |a DETECTION REAGENTS 
690 1 0 |a GROWTH INTERFACES 
690 1 0 |a LOGISTIC REGRESSION MODELING 
690 1 0 |a LOGISTIC REGRESSIONS 
690 1 0 |a NATAMYCIN 
690 1 0 |a ZYGOSACCHAROMYCES BAILII 
690 1 0 |a XANTHAN GUM 
700 1 |a Gliemmo, M.F. 
700 1 |a Soria, M. 
700 1 |a Campos, C.A. 
773 0 |d Elsevier Ltd, 2019  |g v. 116  |h pp. 916-924  |p Food Res. Int.  |x 09639969  |w (AR-BaUEN)CENRE-1760  |t Food Research International 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053690486&doi=10.1016%2fj.foodres.2018.09.028&partnerID=40&md5=1259ac94e9541c70bc18008ba297d34d  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.foodres.2018.09.028  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09639969_v116_n_p916_Zalazar  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09639969_v116_n_p916_Zalazar  |y Registro en la Biblioteca Digital 
961 |a paper_09639969_v116_n_p916_Zalazar  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86663