On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains

We show that, for certain non-smooth bounded domains Ω⊂Rn, the real interpolation space (Lp(Ω),W1,p(Ω))s,p is the subspace W˜s,p(Ω)⊂Lp(Ω) induced by the restricted fractional seminorm |f|W˜s,p(Ω)=(∫Ω∫|x−y|<%[Formula presented]dydx)[Formula presented]. © 2018 Elsevier Inc.

Guardado en:
Detalles Bibliográficos
Autor principal: Drelichman, I.
Otros Autores: Durán, R.G
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04641caa a22005417a 4500
001 PAPER-25698
003 AR-BaUEN
005 20230518205748.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85054125063 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Drelichman, I. 
245 1 3 |a On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains 
260 |b Academic Press Inc.  |c 2019 
270 1 0 |m Drelichman, I.; IMAS (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina; email: irene@drelichman.com 
506 |2 openaire  |e Política editorial 
504 |a Bennett, C., Sharpley, R., Interpolation of Operators (1988) Pure and Applied Mathematics, 129. , Academic Press, Inc. Boston, MA 
504 |a DeVore, R.A., Sharpley, R.C., Besov spaces on domains in Rd (1993) Trans. Amer. Math. Soc., 335 (2), pp. 843-864 
504 |a Dispa, S., Intrinsic characterizations of Besov spaces on Lipschitz domains (2003) Math. Nachr., 260, pp. 21-33 
504 |a Drelichman, I., Durán, R.G., Improved Poincaré inequalities in fractional Sobolev spaces (2017), preprint; Dyda, B., On comparability of integral forms (2006) J. Math. Anal. Appl., 318 (2), pp. 564-577 
504 |a Dyda, B., Ihnatsyeva, L., Vähäkangas, A.V., On improved fractional Sobolev–Poincaré inequalities (2016) Ark. Mat., 54 (2), pp. 437-454 
504 |a Hurri-Syrjänen, R., Vähäkangas, A.V., On fractional Poincaré inequalities (2013) J. Anal. Math., 120, pp. 85-104 
504 |a John, F., Rotation and strain (1961) Comm. Pure Appl. Math., 14, pp. 391-413 
504 |a Johnen, H., Scherer, K., On the equivalence of the K-functional and moduli of continuity and some applications (1977) Constructive Theory of Functions of Several Variables, Proc. Conf., Math. Res. Inst., Oberwolfach, 1976, Lecture Notes in Math., 571, pp. 119-140. , Springer Berlin 
504 |a Martio, O., Sarvas, J., Injectivity theorems in plane and space (1979) Ann. Acad. Sci. Fenn. Ser. A I Math., 4 (2), pp. 383-401 
504 |a Rohde, S., Quasicircles modulo bilipschitz maps (2001) Rev. Mat. Iberoam., 17 (3), pp. 643-659 
504 |a Seeger, A., A Note on Triebel–Lizorkin Spaces (1989) Approximation and Function Spaces (Warsaw, 1986), 22, pp. 391-400. , Banach Center Publ., 22, PWN Warsaw 
504 |a Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (1978) North-Holland Mathematical Library, 18. , North-Holland Publishing Co. Amsterdam-New York 
504 |a Triebel, H., Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers (2002) Rev. Mat. Complut., 15 (2), pp. 475-524 
504 |a Triebel, H., Theory of Function Spaces. III (2006) Monographs in Mathematics, 100. , Birkhäuser Verlag Basel 
520 3 |a We show that, for certain non-smooth bounded domains Ω⊂Rn, the real interpolation space (Lp(Ω),W1,p(Ω))s,p is the subspace W˜s,p(Ω)⊂Lp(Ω) induced by the restricted fractional seminorm |f|W˜s,p(Ω)=(∫Ω∫|x−y|<%[Formula presented]dydx)[Formula presented]. © 2018 Elsevier Inc.  |l eng 
593 |a IMAS (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
593 |a IMAS (UBA-CONICET), Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina 
690 1 0 |a FRACTIONAL SOBOLEV SPACES 
690 1 0 |a IRREGULAR DOMAINS 
690 1 0 |a JOHN DOMAINS 
690 1 0 |a REAL INTERPOLATION 
690 1 0 |a UNIFORM DOMAINS 
700 1 |a Durán, R.G. 
773 0 |d Academic Press Inc., 2019  |g v. 470  |h pp. 91-101  |k n. 1  |p J. Math. Anal. Appl.  |x 0022247X  |w (AR-BaUEN)CENRE-271  |t Journal of Mathematical Analysis and Applications 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054125063&doi=10.1016%2fj.jmaa.2018.09.054&partnerID=40&md5=2b4ec96b649e0ec719fb508b4115afd3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.jmaa.2018.09.054  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0022247X_v470_n1_p91_Drelichman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v470_n1_p91_Drelichman  |y Registro en la Biblioteca Digital 
961 |a paper_0022247X_v470_n1_p91_Drelichman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86651