Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?
We characterize the sets of norm one vectors x1,…,xk in a Hilbert space H such that there exists a k-linear symmetric form attaining its norm at (x1,…,xk). We prove that in the bilinear case, any two vectors satisfy this property. However, for k≥3 only collinear vectors satisfy this property in the...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier Inc.
2019
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 05795caa a22006977a 4500 | ||
|---|---|---|---|
| 001 | PAPER-25680 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205747.0 | ||
| 008 | 190410s2019 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-85056177838 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a LAAPA | ||
| 100 | 1 | |a Carando, D. | |
| 245 | 1 | 0 | |a Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm? |
| 260 | |b Elsevier Inc. |c 2019 | ||
| 270 | 1 | 0 | |m Rodríguez, J.T.; Departamento de Matemática, NUCOMPA, Facultad de Cs. Exactas, Universidad Nacional del Centro de la Provincia de Buenos AiresArgentina; email: jtrodrig@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Acosta, M., Denseness of norm attaining mappings (2006) Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 100 (1-2), pp. 9-30 | ||
| 504 | |a Acosta, M., Aron, R., García, D., Maestre, M., The Bishop–Phelps–Bollobás theorem for operators (2008) J. Funct. Anal., 254 (11), pp. 2780-2799 | ||
| 504 | |a Aron, R., Choi, Y., Kim, S.K., Lee, H.J., Martín, M., The Bishop–Phelps–Bollobás version of Lindenstrauss properties A and B (2015) Trans. Amer. Math. Soc., 367 (9), pp. 6085-6101 | ||
| 504 | |a Banach, S., Uber homogene Polynome in (L2) (1938) Studia Math., 7, pp. 36-44 | ||
| 504 | |a Benítez, C., Sarantopoulos, Y., Characterization of real inner product spaces by means of symmetrical bilinear forms (1993) J. Math. Anal. Appl., 180 (1), pp. 207-220 | ||
| 504 | |a Bochnak, J., Siciak, J., Polynomials and multilinear mappings in topological vector-spaces (1970) Studia Math., 39, pp. 59-76 | ||
| 504 | |a Dantas, S., García, D., Kim, S., Lee, H.J., Maestre, M., On the Bishop–Phelps–Bollobás theorem for multilinear mappings (2017) Linear Algebra Appl., 532, pp. 406-431 | ||
| 504 | |a Dineen, S., Complex analysis on infinite-dimensional spaces (1999), Springer-Verlag London; Floret, K., Natural norms on symmetric tensor products of normed spaces (1997) Note Mat., 17, pp. 153-188 | ||
| 504 | |a Friedland, S., Lim, L., Nuclear norm of high-order tensors (2018) Math. Comp., 18, pp. 1255-1281 | ||
| 504 | |a Grecu, B., Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces (2004) J. Math. Anal. Appl., 293 (2), pp. 578-588 | ||
| 504 | |a Grecu, B., Muñoz-Fernández, G., Seoane-Sepúlveda, J.B., The unit ball of the complex P(H3) (2009) Math. Z., 263 (4), pp. 775-785 | ||
| 504 | |a Kim, S., Lee, S.H., Exposed 2-homogeneous polynomials on Hilbert spaces (2003) Proc. Amer. Math. Soc., 131 (2), pp. 449-453 | ||
| 504 | |a Minc, H., Permanents (1978) Encyclopedia of Mathematics and its Applications, 6. , Addison-Wesley Publishing Co. Reading, Mass | ||
| 504 | |a Muñoz, G., Sarantopoulos, Y., Tonge, A., Complexifications of real Banach spaces, polynomials and multilinear maps (1999) Studia Math., 134 (1), pp. 1-33 | ||
| 504 | |a Nie, J., Symmetric tensor nuclear norms (2017) SIAM J. Appl. Algebra Geometry, 1 (1), pp. 599-625 | ||
| 504 | |a Pappas, A., Sarantopoulos, Y., Tonge, A., Norm attaining polynomials (2007) Bull. Lond. Math. Soc., 39 (2), pp. 255-264 | ||
| 504 | |a Rivlin, T., The Chebyshev Polynomials (1974) Pure and Applied Mathematics, , Wiley-Interscience [John Wiley & Sons] New York | ||
| 520 | 3 | |a We characterize the sets of norm one vectors x1,…,xk in a Hilbert space H such that there exists a k-linear symmetric form attaining its norm at (x1,…,xk). We prove that in the bilinear case, any two vectors satisfy this property. However, for k≥3 only collinear vectors satisfy this property in the complex case, while in the real case this is equivalent to x1,…,xk spanning a subspace of dimension at most 2. We use these results to obtain some applications to symmetric multilinear forms, symmetric tensor products and the exposed points of the unit ball of Ls(Hk). © 2018 Elsevier Inc. |l eng | |
| 536 | |a Detalles de la financiación: PIP 11220130100329CO | ||
| 536 | |a Detalles de la financiación: UBACyT, 20020130100474, PICT 2015-2299 | ||
| 536 | |a Detalles de la financiación: This project was supported in part by CONICET PIP 11220130100329CO , ANPCyT PICT 2015-2299 and UBACyT 20020130100474 . | ||
| 593 | |a Departamento de Matemática – Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina | ||
| 593 | |a IMAS-CONICET, Argentina | ||
| 593 | |a Departamento de Matemática, NUCOMPA, Facultad de Cs. Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, 7000, Argentina | ||
| 593 | |a CONICET, Argentina | ||
| 690 | 1 | 0 | |a HILBERT SPACES |
| 690 | 1 | 0 | |a MULTILINEAR FORMS |
| 690 | 1 | 0 | |a NORM ATTAINING MAPPINGS |
| 690 | 1 | 0 | |a HILBERT SPACES |
| 690 | 1 | 0 | |a TENSORS |
| 690 | 1 | 0 | |a MULTILINEAR FORMS |
| 690 | 1 | 0 | |a REAL CASE |
| 690 | 1 | 0 | |a SYMMETRIC TENSORS |
| 690 | 1 | 0 | |a UNIT BALL |
| 690 | 1 | 0 | |a VECTOR SPACES |
| 700 | 1 | |a Rodríguez, J.T. | |
| 773 | 0 | |d Elsevier Inc., 2019 |g v. 563 |h pp. 178-192 |p Linear Algebra Its Appl |x 00243795 |w (AR-BaUEN)CENRE-248 |t Linear Algebra and Its Applications | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056177838&doi=10.1016%2fj.laa.2018.10.023&partnerID=40&md5=2f79513c401477242b9a8981ea1aae8a |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.laa.2018.10.023 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00243795_v563_n_p178_Carando |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00243795_v563_n_p178_Carando |y Registro en la Biblioteca Digital |
| 961 | |a paper_00243795_v563_n_p178_Carando |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 86633 | ||