Computing the P 3 -hull number of a graph, a polyhedral approach

A subset S of vertices of a graph G=(V,E) is P 3 -convex if every simple path of three vertices starting and ending in S is contained in S. The P 3 -convex hull of S is the smallest P 3 -convex set containing S and the P 3 -hull number of G is the minimum number of vertices of a subset S such that i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Blaum, M.
Otros Autores: Marenco, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04858caa a22006377a 4500
001 PAPER-25666
003 AR-BaUEN
005 20230518205746.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85054564456 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a DAMAD 
100 1 |a Blaum, M. 
245 1 0 |a Computing the P 3 -hull number of a graph, a polyhedral approach 
260 |b Elsevier B.V.  |c 2019 
270 1 0 |m Blaum, M.; Instituto de Ciencias, Universidad Nacional de General SarmientoArgentina; email: mblaum@ungs.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Araujo, R., Sampaio, R., Szwarcfiter, J., The convexity of induced paths of order three (2013) Electron. Notes Discrete Math., 44, pp. 109-114 
504 |a Centeno, C., Dourado, M., Penso, L., Rautenbach, D., Szwarcfiter, J., Irreversible conversion of graphs (2011) Theoret. Comput. Sci., 412, pp. 3693-3700 
504 |a Centeno, C., Dourado, M., Szwarcfiter, J., On the convexity of paths of length two in undirected graphs (2009) Electron. Notes Discrete Math., 32, pp. 11-18 
504 |a Changat, M., Mathew, J., On triangle path convexity in graphs (1999) Discrete Math., 206, pp. 91-95 
504 |a Chen, N., On the approximability of influence in social networks (2009) SIAM J. Discrete Math., 23 (3), pp. 1400-1415 
504 |a Dourado, M., Protti, F., Szwarcfiter, J., Complexity results related to monophonic convexity (2010) Discrete Appl. Math., 158 (12), pp. 1268-1274 
504 |a Dourado, M., Sampaio, R., Complexity aspects of the triangle path convexity (2016) Discrete Appl. Math., 206, pp. 39-47 
504 |a Dreyer, P., Roberts, F., Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion (2009) Discrete Appl. Math., 157, pp. 1615-1627 
504 |a Kyncl, J., Lidiky, B., Vyskocil, T., Irreversible 2-Conversion Set is NP-Complete, Tech. Rep. (2009), Charles Univ; Marcilon, T., Nascimento, S., Sampaio, R., The maximum time of 2-neighbour bootstrap percolation: Complexity results (2014), pp. 372-383. , Graph-Theoretic Concepts in Computer Science: 40th International Workshop, Nouan-le-Fuzelier, France, June 25–27, 2014. Revised Selected Papers; Riedl, E., Largest and smallest minimal percolating sets in trees (2012) Eelectron. J. Combinatorics, 19 (1), p. 64 
504 |a van de Vel, M.L.J., Theory of Convex Structures (1993), North-Holland; Wolsey, L., Integer Programming (1998), John Wiley and Sons 
520 3 |a A subset S of vertices of a graph G=(V,E) is P 3 -convex if every simple path of three vertices starting and ending in S is contained in S. The P 3 -convex hull of S is the smallest P 3 -convex set containing S and the P 3 -hull number of G is the minimum number of vertices of a subset S such that its convex hull is V. It is a known fact that the calculation of the P 3 -hull number of a graph is NP-hard. In the present work we start the study of this problem from a polyhedral point of view, that is, we pose it as a binary IP problem and we study the associated polytope by exploring several families of facet-defining inequalities. © 2018 Elsevier B.V.  |l eng 
593 |a Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina 
593 |a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a COMBINATORIAL OPTIMIZATION 
690 1 0 |a DISCRETE CONVEXITY 
690 1 0 |a FACET-DEFINING INEQUALITIES 
690 1 0 |a HULL NUMBER 
690 1 0 |a COMBINATORIAL OPTIMIZATION 
690 1 0 |a COMPUTATIONAL GEOMETRY 
690 1 0 |a SET THEORY 
690 1 0 |a CONVEX HULL 
690 1 0 |a CONVEX SET 
690 1 0 |a DISCRETE CONVEXITY 
690 1 0 |a FACET-DEFINING INEQUALITIES 
690 1 0 |a HULL NUMBER 
690 1 0 |a NP-HARD 
690 1 0 |a POLYHEDRAL APPROACH 
690 1 0 |a POLYTOPES 
690 1 0 |a GRAPH THEORY 
700 1 |a Marenco, J. 
773 0 |d Elsevier B.V., 2019  |g v. 255  |h pp. 155-166  |p Discrete Appl Math  |x 0166218X  |w (AR-BaUEN)CENRE-310  |t Discrete Applied Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054564456&doi=10.1016%2fj.dam.2018.08.013&partnerID=40&md5=5c257c41c76771f9da9b4e027b56949e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.dam.2018.08.013  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0166218X_v255_n_p155_Blaum  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v255_n_p155_Blaum  |y Registro en la Biblioteca Digital 
961 |a paper_0166218X_v255_n_p155_Blaum  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 86619