A new combinatorial representation of the additive coalescent

The standard additive coalescent starting with n particles is a Markov process which owns several combinatorial representations, one by Pitman as a process of coalescent forests, and one by Chassaing and Louchard as the block sizes in a parking scheme. In the coalescent forest representation, edges...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marckert, J.-F
Otros Autores: Wang, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Ltd 2019
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06976caa a22007337a 4500
001 PAPER-25652
003 AR-BaUEN
005 20230518205745.0
008 190410s2019 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85044779531 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Marckert, J.-F. 
245 1 2 |a A new combinatorial representation of the additive coalescent 
260 |b John Wiley and Sons Ltd  |c 2019 
270 1 0 |m Wang, M.; Conicet-UBA, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Argentina; email: wangminmin03@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Addario-Berry, L., Broutin, N., Holmgren, C., Cutting down trees with a Markov chainsaw (2014) Ann. Appl. Probab., 24 (6), pp. 2297-2339 
504 |a Aldous, D., The continuum random tree. I (1991) Ann. Probab., 19, pp. 1-28 
504 |a Aldous, D., Brownian excursions, critical random graphs and the multiplicative coalescent (1997) Ann. Probab., 25 (2), pp. 812-854 
504 |a Aldous, D., Pitman, J., The standard additive coalescent (1998) Ann. Probab., 26, pp. 1703-1726 
504 |a Aldous, D.J., Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists (1997) Bernoulli, 5, pp. 3-48 
504 |a Bertoin, J., A fragmentation process connected to Brownian motion (2000) Probab. Theory Relat. Fields, 117 (2), pp. 289-301 
504 |a Bertoin, J., (2006) Random Fragmentation and Coagulation Processes, , Cambridge, University Press, Cambridge 
504 |a Bertoin, J., Fires on trees (2012) Ann. Inst. Henri Poincaré Probab. Stat., 48 (4), pp. 909-921 
504 |a Bertoin, J., Miermont, G., The cut-tree of large Galton–Watson trees and the Brownian CRT (2013) Ann. Appl. Probab., 23 (4), pp. 1469-1493 
504 |a Broutin, N., Marckert, J., A new encoding of combinatorial coalescent processes. Applications to the additive and multiplicative cases (2016) Probab. Theory Relat. Fields, 166 (1), pp. 515-552 
504 |a Broutin, N., Wang, M., Cutting down p-trees and inhomogeneous continuum random trees (2017) Bernoulli, 23 (4A), pp. 2380-2433 
504 |a Chassaing, P., Louchard, G., Phase transition for parking blocks, brownian excursion and coalescence (2002) Random Struct. Algorithms, 21 (1), pp. 76-119 
504 |a Dieuleveut, D., The vertex-cut-tree of Galton–Watson trees converging to a stable tree (2015) Ann. Appl. Probab., 25 (4), pp. 2215-2262 
504 |a Dvoretzky, A., Motzkin, T., A problem of arrangements (1947) Duke Math. J., 14, pp. 305-313 
504 |a Evans, S., Pitman, J., Construction of Markovian coalescents (1998) Ann. Inst. H. Poincaré Probab. Stat., 34, pp. 339-383 
504 |a Evans, S.N., (2008) Probability and Real Trees, volume 1920 of Lecture Notes in Mathematics, , Springer, Berlin, Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6–23, 2005 
504 |a Fournier, N., Laurençot, P., Well-posedness of Smoluchowski's coagulation equation for a class of homogeneous kernels (2006) J. Funct. Anal., 233 (2), pp. 351-379 
504 |a Janson, S., Random cutting and records in deterministic and random trees, Random (2006) Struct. Algorithms, 29 (2), pp. 139-179 
504 |a Kaigh, W.D., An invariance principle for random walk conditioned by a late return to zero (1976) Ann. Probab., 4 (1), pp. 115-121 
504 |a Kingman, J.F.C., The coalescent (1982) Stoch. Process Appl., 13 (3), pp. 235-248 
504 |a Le Gall, J.-F., The uniform random tree in a Brownian excursion (1993) Probab. Theory Relat. Fields, 96 (3), pp. 369-383 
504 |a Lushnikov, A., Some new aspects of coagulation theory Izv. Atmos. Ocean Phys., 14 (1978), pp. 738-743 
504 |a Marcus, A., Stochastic coalescence (1968) Technometrics, 10 (1), pp. 133-143 
504 |a Meir, A., Moon, J., Cutting down random trees (1970) J. Aust. Math. Soc., 11, pp. 313-324 
504 |a Moon, J.W., On the maximum degree in a random tree (1968) Mich. Math. J., 15 (4), pp. 429-432 
504 |a Panholzer, A., Cutting down very simple trees (2006) Quaest. Math., 29, pp. 211-228 
504 |a Pitman, J., Coalescent random forests (1999) J. Combin. Theory Ser. A, 85 (2), pp. 165-193 
504 |a Pitman, J., (2006) Combinatorial Stochastic Processes, volume 1875 of Lecture Notes in Mathematics, , Springer, Berlin 
504 |a Riordan, J., Forests of cayley trees (1968) J. Comb. Theory, 5, pp. 90-103 
504 |a Smoluchowski, M., Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen Physik. Zeit., 17 (1916), pp. 557-585 
520 3 |a The standard additive coalescent starting with n particles is a Markov process which owns several combinatorial representations, one by Pitman as a process of coalescent forests, and one by Chassaing and Louchard as the block sizes in a parking scheme. In the coalescent forest representation, edges are added successively between a random node and a random root. In this paper, we investigate an alternative construction by, instead, adding edges between roots. This construction induces exactly the same process in terms of cluster sizes, meanwhile, it allows us to make numerous new connections with other combinatorial and probabilistic models: size biased percolation, parking scheme in a tree, increasing trees, random cuts of trees. The variety of the combinatorial objects involved justifies our interest in this construction. © 2018 Wiley Periodicals, Inc.  |l eng 
536 |a Detalles de la financiación: The research has been supported by ANR-14-CE25-0014 (ANR GRAAL). We thank an anonymous referee for his/her suggestions on an earlier version. 
593 |a CNRS, LaBRI Université de Bordeaux, Talence cedex, 33405, France 
593 |a Conicet-UBA, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Capital Federal, Argentina 
690 1 0 |a ADDITIVE COALESCENT 
690 1 0 |a CAYLEY TREES 
690 1 0 |a INCREASING TREES 
690 1 0 |a PARKING 
690 1 0 |a RANDOM WALKS ON TREES 
700 1 |a Wang, M. 
773 0 |d John Wiley and Sons Ltd, 2019  |g v. 54  |h pp. 340-370  |k n. 2  |p Random Struct. Algorithms  |x 10429832  |t Random Structures and Algorithms 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044779531&doi=10.1002%2frsa.20775&partnerID=40&md5=560d7035812f571416f819f73ed70ca0  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/rsa.20775  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10429832_v54_n2_p340_Marckert  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10429832_v54_n2_p340_Marckert  |y Registro en la Biblioteca Digital 
961 |a paper_10429832_v54_n2_p340_Marckert  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 86605